【題目】圓心在曲線上,與直線x+y+1=0相切,且面積最小的圓的方程為( )
A. x2+(y-1)2=2B. x2+(y+1)2=2C. (x-1)2+y2=2D. (x+1)2+y2=2
科目:高中數學 來源: 題型:
【題目】分形幾何學是數學家伯努瓦曼德爾布羅在20世紀70年代創(chuàng)立的一門新的數學學科.它的創(chuàng)立為解決傳統(tǒng)科學眾多領域的難題提供了全新的思路.按照如圖1所示的分形規(guī)律可得如圖2所示的一個樹形圖:
易知第三行有白圈5個,黑圈4個.我們采用“坐標”來表示各行中的白圈、黑圈的個數.比如第一行記為,第二行記為,第三行記為.照此規(guī)律,第行中的白圈、黑圈的“坐標”為,則________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知某保險公司的某險種的基本保費為(單位:元),繼續(xù)購買該險種的投保人稱為續(xù)保人,續(xù)保人本年度的保費與其上年度出險次數的關聯(lián)如下:
上年度出險次數 | 0 | 1 | 2 | 3 | |
保費(元) |
隨機調查了該險種的400名續(xù)保人在一年內的出險情況,得到下表:
出險次數 | 0 | 1 | 2 | 3 | |
頻數 | 280 | 80 | 24 | 12 | 4 |
該保險公司這種保險的賠付規(guī)定如下:
出險序次 | 第1次 | 第2次 | 第3次 | 第4次 | 第5次及以上 |
賠付金額(元) | 0 |
將所抽樣本的頻率視為概率.
(Ⅰ)求本年度續(xù)保人保費的平均值的估計值;
(Ⅱ)按保險合同規(guī)定,若續(xù)保人在本年度內出險3次,則可獲得賠付元;若續(xù)保人在本年度內出險6次,則可獲得賠付元;依此類推,求本年度續(xù)保人所獲賠付金額的平均值的估計值;
(Ⅲ)續(xù)保人原定約了保險公司的銷售人員在上午10:30~11:30之間上門簽合同,因為續(xù)保人臨時有事,外出的時間在上午10:45~11:05之間,請問續(xù)保人在離開前見到銷售人員的概率是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有一矩形硬紙板材料(厚度忽略不計),一邊長為6分米,另一邊足夠長.現(xiàn)從中截取矩形(如圖甲所示),再剪去圖中陰影部分,用剩下的部分恰好能折卷成一個底面是弓形的柱體包裝盒(如圖乙所示,重疊部分忽略不計),其中是以為圓心、的扇形,且弧,分別與邊, 相切于點, .
(1)當長為1分米時,求折卷成的包裝盒的容積;
(2)當的長是多少分米時,折卷成的包裝盒的容積最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某電子工廠生產一種電子元件,產品出廠前要檢出所有次品.已知這種電子元件次品率為0.01,且這種電子元件是否為次品相互獨立.現(xiàn)要檢測3000個這種電子元件,檢測的流程是:先將這3000個電子元件分成個數相等的若干組,設每組有個電子元件,將每組的個電子元件串聯(lián)起來,成組進行檢測,若檢測通過,則本組全部電子元件為正品,不需要再檢測;若檢測不通過,則本組至少有一個電子元件是次品,再對本組個電子元件逐一檢測.
(1)當時,估算一組待檢測電子元件中有次品的概率;
(2)設一組電子元件的檢測次數為,求的數學期望;
(3)估算當為何值時,每個電子元件的檢測次數最小,并估算此時檢測的總次數(提示:利用進行估算).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面內,將一個圖形繞一點按某個方向轉動一個角度,這樣的運動叫做圖形的旋轉,如圖,小盧利用圖形的旋轉設計某次活動的徽標,他將邊長為a的正三角形ABC 繞其中心O逆時針旋轉到三角形A1B1C1,且.順次連結A,A1,B,B1,C,C1,A,得到六邊形徽標AA1BB1CC1 .
(1)當=時,求六邊形徽標的面積;
(2)求六邊形徽標的周長的最大值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com