【題目】某電子工廠生產(chǎn)一種電子元件,產(chǎn)品出廠前要檢出所有次品.已知這種電子元件次品率為0.01,且這種電子元件是否為次品相互獨(dú)立.現(xiàn)要檢測(cè)3000個(gè)這種電子元件,檢測(cè)的流程是:先將這3000個(gè)電子元件分成個(gè)數(shù)相等的若干組,設(shè)每組有個(gè)電子元件,將每組的個(gè)電子元件串聯(lián)起來,成組進(jìn)行檢測(cè),若檢測(cè)通過,則本組全部電子元件為正品,不需要再檢測(cè);若檢測(cè)不通過,則本組至少有一個(gè)電子元件是次品,再對(duì)本組個(gè)電子元件逐一檢測(cè).

1)當(dāng)時(shí),估算一組待檢測(cè)電子元件中有次品的概率;

2)設(shè)一組電子元件的檢測(cè)次數(shù)為,求的數(shù)學(xué)期望;

3)估算當(dāng)為何值時(shí),每個(gè)電子元件的檢測(cè)次數(shù)最小,并估算此時(shí)檢測(cè)的總次數(shù)(提示:利用進(jìn)行估算).

【答案】10.05 2 3 600

【解析】

1)事件:一組待檢測(cè)電子元件中由次品,由計(jì)算;

2的可能取值為,表示k個(gè)元件一次檢測(cè)全通過.由此可得概率分布列,從而可得期望.

3)由(2)得平均次數(shù)為,由基本不等式求得最小值.

解:(1)設(shè)事件:一組待檢測(cè)電子元件中由次品,則事件表示一組待檢測(cè)電子元件中沒有次品;

因?yàn)?/span>

所以

2)依題意,的可能取值為

分布列如下:

1

所以的數(shù)學(xué)期望為:

3)由(2)可得:每個(gè)元件的平均檢驗(yàn)次數(shù)為:

因?yàn)?/span>

當(dāng)且僅當(dāng)時(shí),檢驗(yàn)次數(shù)最小

此時(shí)總檢驗(yàn)次數(shù)(次)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的各項(xiàng)均為正數(shù),且,對(duì)于任意的,均有.

1)求證:是等比數(shù)列,并求出的通項(xiàng)公式;

2)若數(shù)列中去掉的項(xiàng)后,余下的項(xiàng)組成數(shù)列,求;

3)設(shè),數(shù)列的前項(xiàng)和為,是否存在正整數(shù),使得、、成等比數(shù)列,若存在,求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其導(dǎo)函數(shù)設(shè)為.

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若函數(shù)有兩個(gè)極值點(diǎn),試用表示

(Ⅲ)在(Ⅱ)的條件下,若的極值點(diǎn)恰為的零點(diǎn),試求,這兩個(gè)函數(shù)的所有極值之和的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圓心在曲線上,與直線x+y+1=0相切,且面積最小的圓的方程為( 。

A. x2+y-12=2B. x2+y+12=2C. x-12+y2=2D. x+12+y2=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司新上一條生產(chǎn)線,為保證新的生產(chǎn)線正常工作,需對(duì)該生產(chǎn)線進(jìn)行檢測(cè),現(xiàn)從該生產(chǎn)線上隨機(jī)抽取100件產(chǎn)品,測(cè)量產(chǎn)品數(shù)據(jù),用統(tǒng)計(jì)方法得到樣本的平均數(shù),標(biāo)準(zhǔn)差,繪制如圖所示的頻率分布直方圖,以頻率值作為概率估值。

(1)從該生產(chǎn)線加工的產(chǎn)品中任意抽取一件,記其數(shù)據(jù)為,依據(jù)以下不等式評(píng)判(表示對(duì)應(yīng)事件的概率)

評(píng)判規(guī)則為:若至少滿足以上兩個(gè)不等式,則生產(chǎn)狀況為優(yōu),無需檢修;否則需檢修生產(chǎn)線,試判斷該生產(chǎn)線是否需要檢修;

(2)將數(shù)據(jù)不在內(nèi)的產(chǎn)品視為次品,從該生產(chǎn)線加工的產(chǎn)品中任意抽取2件,次品數(shù)記為,求的分布列與數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】改革開放以來,人們的支付方式發(fā)生了巨大轉(zhuǎn)變.近年來,移動(dòng)支付已成為主要支付方式之一.為了解某校學(xué)生上個(gè)月A,B兩種移動(dòng)支付方式的使用情況,從全校學(xué)生中隨機(jī)抽取了100人,發(fā)現(xiàn)樣本中A,B兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學(xué)生的支付金額分布情況如下:

交付金額(元)

支付方式

0,1000]

1000,2000]

大于2000

僅使用A

18

9

3

僅使用B

10

14

1

(Ⅰ)從全校學(xué)生中隨機(jī)抽取1人,估計(jì)該學(xué)生上個(gè)月A,B兩種支付方式都使用的概率;

(Ⅱ)從樣本僅使用A和僅使用B的學(xué)生中各隨機(jī)抽取1人,以X表示這2人中上個(gè)月支付金額大于1000元的人數(shù),求X的分布列和數(shù)學(xué)期望;

(Ⅲ)已知上個(gè)月樣本學(xué)生的支付方式在本月沒有變化.現(xiàn)從樣本僅使用A的學(xué)生中,隨機(jī)抽查3人,發(fā)現(xiàn)他們本月的支付金額都大于2000元.根據(jù)抽查結(jié)果,能否認(rèn)為樣本僅使用A的學(xué)生中本月支付金額大于2000元的人數(shù)有變化?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知表示不小于x的最小整數(shù),例如.

1)設(shè),若,求實(shí)數(shù)m的取值范圍;

2)設(shè),在區(qū)間)上的值域?yàn)?/span>,求集合中元素的個(gè)數(shù);

3)設(shè)),,若對(duì)于,都有,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面直角坐標(biāo)系,以為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的參數(shù)方程為為參數(shù)),點(diǎn)時(shí)曲線上兩點(diǎn),點(diǎn)的極坐標(biāo)分別為,.

1)寫出曲線的普通方程和極坐標(biāo)方程;

2)求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案