【題目】如圖,直四棱柱 的所有棱長(zhǎng)均為2, 為 中點(diǎn).
(Ⅰ)求證: 平面 ;
(Ⅱ)若 ,求平面 與平面 所成銳二面角的大小.
【答案】解:(Ⅰ)連結(jié) 交 于 ,取 中點(diǎn) ,連結(jié) .
因?yàn)? ,所以 是平行四邊形,故 .
又 是 的中位線,故 ,所以 ,
所以四邊形 為平行四邊形.
所以 ,所以 ,
又 平面 , 平面 ,
所以 平面 .
(Ⅱ)以 為原點(diǎn),建立空間直角坐標(biāo)系 如圖所示,
則 , , , , ,
設(shè)平面 的法向量 ,
則 ,即 ,
解得 ,
令 ,得 ,
顯然平面 的一個(gè)法向量 ,
所以 ,
所以平面 與平面 所成銳二面角的大小為45°
【解析】(Ⅰ)根據(jù)題目中所給的條件的特點(diǎn),連結(jié)AC交BD于O,取BD1 的中點(diǎn)F,由已知可得ACC1A1是平行四邊形,故A1C1∥AC.再由三角形中位線定理可得四邊形OCEF為平行四邊形.得到A1C1∥EF,由線面平行的判定可得結(jié)論;
(Ⅱ)建立適當(dāng)?shù)目臻g直角坐標(biāo)系O-xyz,由已知求得點(diǎn)的坐標(biāo),求出平面BED1的法向量與平面ABCD的一個(gè)法向量,由兩法向量所成角的余弦值可得平面BED1與平面ABCD所成銳二面角的大。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知曲線 ,過點(diǎn) 的直線 ( 為參數(shù))與曲線 相交于點(diǎn) , 兩點(diǎn).
(1)求曲線 的平面直角坐標(biāo)系方程和直線 的普通方程;
(2)求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) , ,其中 .
(1)當(dāng) 時(shí),求函數(shù) 的單調(diào)遞減區(qū)間;
(2)若對(duì)任意的 , ( 為自然對(duì)數(shù)的底數(shù))都有 成立,求實(shí)數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐 中,底面 為梯形, 底面 , .過 作一個(gè)平面 使得 平面 .
(1)求平面 將四棱錐 分成兩部分幾何體的體積之比;
(2)若平面 與平面 之間的距離為 ,求直線 與平面 所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平行四邊形 的三個(gè)頂點(diǎn)坐標(biāo)為 , , .
(Ⅰ)求頂點(diǎn) 的坐標(biāo);
(Ⅱ)求四邊形 的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
如圖,在四棱錐P—ABCD中,側(cè)面PAD⊥底面ABCD,側(cè)棱PA=PD=,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O為AD中點(diǎn).
(Ⅰ)求證:PO⊥平面ABCD;
(Ⅱ)求異面直線PB與CD所成角的余弦值;
(Ⅲ)求點(diǎn)A到平面PCD的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某旅游愛好者計(jì)劃從3個(gè)亞洲國家 和3個(gè)歐洲國家 中選擇2個(gè)國家去旅游.
(Ⅰ)若從這6個(gè)國家中任選2個(gè),求這2個(gè)國家都是亞洲國家的概率;
(Ⅱ)若從亞洲國家和歐洲國家中各任選1個(gè),求這2個(gè)國家包括 但不包括 的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為調(diào)查高一、高二學(xué)生周日在家學(xué)習(xí)用時(shí)情況,隨機(jī)抽取了高一、高二各人,對(duì)他們的學(xué)習(xí)時(shí)間進(jìn)行了統(tǒng)計(jì),分別得到了高一學(xué)生學(xué)習(xí)時(shí)間(單位:小時(shí))的頻數(shù)分布表和高二學(xué)生學(xué)習(xí)時(shí)間的頻率分布直方圖.
高一學(xué)生學(xué)習(xí)時(shí)間的頻數(shù)分布表(學(xué)習(xí)時(shí)間均在區(qū)間內(nèi)):
學(xué)習(xí)時(shí)間 | ||||||
頻數(shù) | 3 | 1 | 8 | 4 | 2 | 2 |
高二學(xué)生學(xué)習(xí)時(shí)間的頻率分布直方圖:
(1)求高二學(xué)生學(xué)習(xí)時(shí)間的頻率分布直方圖中的值,并根據(jù)此頻率分布直方圖估計(jì)該校高二學(xué)生學(xué)習(xí)時(shí)間的中位數(shù);
(2)利用分層抽樣的方法,從高一學(xué)生學(xué)習(xí)時(shí)間在,的兩組里隨機(jī)抽取人,再從這人中隨機(jī)抽取人,求學(xué)習(xí)時(shí)間在這一組中至少有人被抽中的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com