【題目】某中學(xué)在“三關(guān)心”(即關(guān)心家庭、關(guān)心學(xué)校、關(guān)心社會(huì))的專題中,對(duì)個(gè)稅起征點(diǎn)問(wèn)題進(jìn)行了學(xué)習(xí)調(diào)查.學(xué)校決定從高一年級(jí)800人,高二年級(jí)1000人,高三年級(jí)800人中按分層抽樣的方法共抽取13人進(jìn)行談話,其中認(rèn)為個(gè)稅起征點(diǎn)為3000元的有3人,認(rèn)為個(gè)稅起征點(diǎn)為4000元的有6人,認(rèn)為個(gè)稅起征點(diǎn)為 5000元的有4人.
(1)求高一年級(jí)、高二年級(jí)、高三年級(jí)分別抽取多少人?
(2)從13人中選出3人,求至少有1人認(rèn)為個(gè)稅起征點(diǎn)為4000元的概率;
(3)記從13人中選出3人中認(rèn)為個(gè)稅起征點(diǎn)為4000元的人數(shù)為,求的分布列與數(shù)學(xué)期望.
【答案】(1)4人、5人、4人;(2);(3)分布列見解析,
【解析】分析:(1)根據(jù)分層抽樣定義按比例抽取即可;
(2)利用對(duì)立事件概率公式即可求出至少有1人認(rèn)為個(gè)稅起征點(diǎn)為4000元的概率;
(3)的所有可能取值有,明確相應(yīng)的概率值,即可得到的分布列與數(shù)學(xué)期望.
詳解:(1)∵ ,
∴ 按分層抽樣的方法共抽取13人進(jìn)行談話,高一年級(jí)、高二年級(jí)、高三年級(jí)分別抽取4人、5人、4人;
(2)記“從13人中選出3人,至少有1人認(rèn)為個(gè)稅起征點(diǎn)為4000元”為事件,則,
∴ 從13人中選出3人,求至少有1人認(rèn)為個(gè)稅起征點(diǎn)為4000元的概率為;
(3)的所有可能取值有,
,,
,.
∴ 的分布列為
數(shù)學(xué)期望.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(12分)為考察某種藥物預(yù)防疾病的效果,進(jìn)行動(dòng)物試驗(yàn),調(diào)查了105個(gè)樣本,統(tǒng)計(jì)結(jié)果為:服藥的共有55個(gè)樣本,服藥但患病的仍有10個(gè)樣本,沒有服藥且未患病的有30個(gè)樣本.
(1)根據(jù)所給樣本數(shù)據(jù)完成2×2列聯(lián)表中的數(shù)據(jù);
(2)請(qǐng)問(wèn)能有多大把握認(rèn)為藥物有效?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)一個(gè)樣本容量為100的數(shù)據(jù)分組,各組的頻數(shù)如表:
區(qū)間 | [17,19) | [19,21) | [21,23) | [23,25) | [25,27) | [27,29) | [29,31) | [31,33] |
頻數(shù) | 1 | 1 | 3 | 3 | 18 | 16 | 28 | 30 |
估計(jì)小于29的數(shù)據(jù)大約占總體的( )
A. 16% B. 40% C. 42% D. 58%
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線C的參數(shù)方程是 (θ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,A、B的極坐標(biāo)分別為A﹣(2,0)、B(﹣1, )
(1)求直線AB的直角坐標(biāo)方程;
(2)在曲線C上求一點(diǎn)M,使點(diǎn)M到AB的距離最大,并求出些最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了分析本校高中生的性別與是否喜歡數(shù)學(xué)之間的關(guān)系,在高中生中隨機(jī)地抽取了90名學(xué)生調(diào)查,得到了如下列聯(lián)表:
喜歡數(shù)學(xué) | 不喜歡數(shù)學(xué) | 總計(jì) | |
男 | 30 | ① | 45 |
女 | ② | 25 | 45 |
總計(jì) | ③ | ④ | 90 |
(1)求①②③④處分別對(duì)應(yīng)的值;
(2)能有多大把握認(rèn)為“高中生的性別與喜歡數(shù)學(xué)”有關(guān)?
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)命題:
①圓與直線相交,所得弦長(zhǎng)為;
②直線與圓恒有公共點(diǎn);
③若棱長(zhǎng)為的正方體的頂點(diǎn)都在同一球面上,則該球的表面積為;
④若棱長(zhǎng)為的正四面體的頂點(diǎn)都在同一球面上,則該球的體積為.
其中,正確命題的序號(hào)為__________.(寫出所有正確命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)同時(shí)滿足:①對(duì)于定義域上的任意,恒有;②對(duì)于定義域上的任意.當(dāng),恒有.則稱函數(shù)為“理想函數(shù)”,則下列三個(gè)函數(shù)中:
(1),
(2),
(3).
稱為“理想函數(shù)”的有 (填序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在R上的函數(shù)y=f(x),滿足f(2)=0,函數(shù)y=f(x+1)的圖象關(guān)于點(diǎn)(-1,0)中心對(duì)稱,且對(duì)任意的負(fù)數(shù)x1,x2(x1≠x2),恒成立,則不等式f(x)<0的解集為____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com