【題目】(12分)為考察某種藥物預(yù)防疾病的效果,進(jìn)行動物試驗,調(diào)查了105個樣本,統(tǒng)計結(jié)果為:服藥的共有55個樣本,服藥但患病的仍有10個樣本,沒有服藥且未患病的有30個樣本.
(1)根據(jù)所給樣本數(shù)據(jù)完成2×2列聯(lián)表中的數(shù)據(jù);
(2)請問能有多大把握認(rèn)為藥物有效?
【答案】20,有效
【解析】根據(jù)題意,列出服用藥的共有55個樣本,則未服藥的50個樣本,服用藥但未患病的有20個樣本,沒有服用藥且未患病的有30個樣本,列出2×2列聯(lián)表;
求出,記憶卡方范圍,得出判斷。
解:(1)根據(jù)所給樣本數(shù)據(jù)可畫出2×2列聯(lián)表如下:
服藥 | 未服藥 | 合計 | |
患病 | 10 | 45 | 55 |
未患病 | 20 | 30 | 50 |
合計 | 30 | 75 | 105 |
.。。。。。。。。。。。。。。。6分
(2)將表中數(shù)據(jù)代入公式,得到
。。。。。。10分
因為,所以有95%以上的把握認(rèn)為藥物有效,
即這種判斷出錯的可能性不超過5%.。。。。。。。。。。。12分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面中兩條直線和相交于點(diǎn)O,對于平面上任意一點(diǎn)M,若x,y分別是M到直線和的距離,則稱有序非負(fù)實數(shù)對(x,y)是點(diǎn)M的“距離坐標(biāo)”.已知常數(shù)p≥0,q≥0,給出下列三個命題:
①若p=q=0,則“距離坐標(biāo)”為(0,0)的點(diǎn)有且只有1個;
②若pq=0,且p+q≠0,則“距離坐標(biāo)”為(p,q)的點(diǎn)有且只有2個;
③若pq≠0則“距離坐標(biāo)”為(p,q)的點(diǎn)有且只有4個.
上述命題中,正確命題的是______.(寫出所有正確命題的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】執(zhí)行如圖的程序框圖,為使輸出S的值小于91,則輸入的正整數(shù)N的最小值為( )
A.5
B.4
C.3
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】汕頭某通訊設(shè)備廠為適應(yīng)市場需求,提高效益,特投入98萬元引進(jìn)世界先進(jìn)設(shè)備奔騰6號,并馬上投入生產(chǎn).第一年需要的各種費(fèi)用是12萬元,從第二年開始,所需費(fèi)用會比上一年增加4萬元,而每年因引入該設(shè)備可獲得的年利潤為50萬元.
請你根據(jù)以上數(shù)據(jù),解決下列問題:(1)引進(jìn)該設(shè)備多少年后,收回成本并開始盈利?(2)引進(jìn)該設(shè)備若干年后,有兩種處理方案:第一種:年平均盈利達(dá)到最大值時,以26萬元的價格賣出;第二種:盈利總額達(dá)到最大值時,以8萬元的價格賣出.問哪種方案較為合算?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個三位自然數(shù)的百位,十位,個位上的數(shù)字依次為,當(dāng)且僅當(dāng)且時稱為“凹數(shù)”.若,且互不相同,任取一個三位數(shù),則它為“凹數(shù)”的概率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】因金融危機(jī),某公司的出口額下降,為此有關(guān)專家提出兩種促進(jìn)出口的方案,每種方案都需要分兩年實施。若實施方案一,預(yù)計第一年可以使出口額恢復(fù)到危機(jī)前的倍、倍、倍的概率分別為、、;第二年可以使出口額為第一年的倍、倍的概率分別為、。若實施方案二,預(yù)計第一年可以使出口額恢復(fù)到危機(jī)前的倍、倍、倍的概率分別為、、;第二年可以使出口額為第一年的倍、倍的概率分別為、。實施每種方案第一年與第二年相互獨(dú)立。令表示方案實施兩年后出口額達(dá)到危機(jī)前的倍數(shù)。
(1)寫出的分布列;
(2)實施哪種方案,兩年后出口額超過危機(jī)前出口額的概率更大?
(3)不管哪種方案,如果實施兩年后出口額達(dá)不到、恰好達(dá)到、超過危機(jī)前出口額,預(yù)計利潤分別為萬元、萬元、萬元,問實施哪種方案的平均利潤更大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過原點(diǎn)的動直線l與圓相交于不同的兩點(diǎn)A,B.
(1)求線段AB的中點(diǎn)M的軌跡C的方程;
(2)是否存在實數(shù)k,使得直線L:y=k(x﹣4)與曲線C只有一個交點(diǎn)?若存在,求出k的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知0<a<b,且a+b=1,則下列不等式中正確的是( )
A.log2a>0
B.2a﹣b<
C.log2a+log2b<﹣2
D.2( + )<
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)在“三關(guān)心”(即關(guān)心家庭、關(guān)心學(xué)校、關(guān)心社會)的專題中,對個稅起征點(diǎn)問題進(jìn)行了學(xué)習(xí)調(diào)查.學(xué)校決定從高一年級800人,高二年級1000人,高三年級800人中按分層抽樣的方法共抽取13人進(jìn)行談話,其中認(rèn)為個稅起征點(diǎn)為3000元的有3人,認(rèn)為個稅起征點(diǎn)為4000元的有6人,認(rèn)為個稅起征點(diǎn)為 5000元的有4人.
(1)求高一年級、高二年級、高三年級分別抽取多少人?
(2)從13人中選出3人,求至少有1人認(rèn)為個稅起征點(diǎn)為4000元的概率;
(3)記從13人中選出3人中認(rèn)為個稅起征點(diǎn)為4000元的人數(shù)為,求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com