【題目】下列四個(gè)命題:

①圓與直線相交,所得弦長(zhǎng)為

②直線與圓恒有公共點(diǎn);

③若棱長(zhǎng)為的正方體的頂點(diǎn)都在同一球面上,則該球的表面積為;

④若棱長(zhǎng)為的正四面體的頂點(diǎn)都在同一球面上,則該球的體積為.

其中,正確命題的序號(hào)為__________.(寫出所有正確命題的序號(hào))

【答案】②④.

【解析】試題分析:①②是直線和圓的位置關(guān)系及弦長(zhǎng)問題,一般轉(zhuǎn)化為圓心到直線的距離問題,但本題中很容易看出中直線x﹣2y=0過圓心,中直線和圓均過原點(diǎn);③④為與球有關(guān)的組合體問題,結(jié)合球的截面性質(zhì),球心與截面圓心的連線垂直于截面圓處理.

詳解:圓心(﹣2,﹣1)在直線x﹣2y=0上,即直線x﹣2y=0過圓心,所得弦長(zhǎng)為直徑4,結(jié)論錯(cuò)誤;

②∵直線y=kx與圓(x﹣cosθ)2+(y﹣sinθ)2=1橫過原點(diǎn),故恒有公共點(diǎn)正確;

球直徑為正方體的對(duì)角線長(zhǎng)即 ,故求半徑R= ,球表面積為s=4πR2=27π,結(jié)論錯(cuò)誤;

由上圖可知,AH=, ,∴R=,

,∴,∴ ,結(jié)論正確.

故答案為:②④

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】因金融危機(jī),某公司的出口額下降,為此有關(guān)專家提出兩種促進(jìn)出口的方案,每種方案都需要分兩年實(shí)施。若實(shí)施方案一,預(yù)計(jì)第一年可以使出口額恢復(fù)到危機(jī)前的倍、倍、倍的概率分別為、、;第二年可以使出口額為第一年的倍、倍的概率分別為、。若實(shí)施方案二,預(yù)計(jì)第一年可以使出口額恢復(fù)到危機(jī)前的倍、倍、倍的概率分別為、、;第二年可以使出口額為第一年的倍、倍的概率分別為。實(shí)施每種方案第一年與第二年相互獨(dú)立。令表示方案實(shí)施兩年后出口額達(dá)到危機(jī)前的倍數(shù)。

1)寫出的分布列;

2)實(shí)施哪種方案,兩年后出口額超過危機(jī)前出口額的概率更大?

3)不管哪種方案,如果實(shí)施兩年后出口額達(dá)不到、恰好達(dá)到、超過危機(jī)前出口額,預(yù)計(jì)利潤(rùn)分別為萬元、萬元、萬元,問實(shí)施哪種方案的平均利潤(rùn)更大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表是最近十屆奧運(yùn)會(huì)的年份、屆別、主辦國(guó),以及主辦國(guó)在上屆獲得的金牌數(shù)、當(dāng)屆

獲得的金牌數(shù)的統(tǒng)計(jì)數(shù)據(jù):

年份

1972

1976

1980

1984

1988

1992

1996

2000

2004

2008

屆別

20

21

22

23

24

25

26

27

28

29

主辦國(guó)家

聯(lián)邦

德國(guó)

加拿大

蘇聯(lián)

美國(guó)

韓國(guó)

西班牙

美國(guó)

澳大

利亞

希臘

中國(guó)

上屆金牌數(shù)

5

0

49

未參加

6

1

37

9

4

32

當(dāng)界金牌數(shù)

13

0

80

83

12

13

44

16

6

51

某體育愛好組織,利用上表研究所獲金牌數(shù)與主辦奧運(yùn)會(huì)之間的關(guān)系,

(1)求出主辦國(guó)在上屆所獲金牌數(shù)(設(shè)為)與在當(dāng)屆所獲金牌數(shù)(設(shè)為)之間的線性回歸方程

其中

(2)在2008年第29屆北京奧運(yùn)會(huì)上日本獲得9塊金牌,則據(jù)此線性回歸方程估計(jì)在2020 年第 32 屆東

京奧運(yùn)會(huì)上日本將獲得的金牌數(shù)為(所有金牌數(shù)精確到整數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,PA⊥底面ABCD,ABADACCD,∠ABC=60°,PAABBC,EPC的中點(diǎn).

(1)證明:AE⊥平面PCD;

(2)求二面角APDC的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)在“三關(guān)心”(即關(guān)心家庭、關(guān)心學(xué)校、關(guān)心社會(huì))的專題中,對(duì)個(gè)稅起征點(diǎn)問題進(jìn)行了學(xué)習(xí)調(diào)查.學(xué)校決定從高一年級(jí)800人,高二年級(jí)1000人,高三年級(jí)800人中按分層抽樣的方法共抽取13人進(jìn)行談話,其中認(rèn)為個(gè)稅起征點(diǎn)為3000元的有3人,認(rèn)為個(gè)稅起征點(diǎn)為4000元的有6人,認(rèn)為個(gè)稅起征點(diǎn)為 5000元的有4人.

(1)求高一年級(jí)、高二年級(jí)、高三年級(jí)分別抽取多少人?

(2)從13人中選出3人,求至少有1人認(rèn)為個(gè)稅起征點(diǎn)為4000元的概率;

(3)記從13人中選出3人中認(rèn)為個(gè)稅起征點(diǎn)為4000元的人數(shù)為,求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了探究某市高中理科生在高考志愿中報(bào)考“經(jīng)濟(jì)類”專業(yè)是否與性別有關(guān),現(xiàn)從該市高三理科生中隨機(jī)抽取50各學(xué)生進(jìn)行調(diào)查,得到如下2×2列聯(lián)表:(單位:人).

報(bào)考“經(jīng)濟(jì)類”

不報(bào)“經(jīng)濟(jì)類”

合計(jì)

6

24

30

14

6

20

合計(jì)

20

30

50

(Ⅰ)據(jù)此樣本,能否有99%的把握認(rèn)為理科生報(bào)考“經(jīng)濟(jì)類”專業(yè)與性別有關(guān)?
(Ⅱ)若以樣本中各事件的頻率作為概率估計(jì)全市總體考生的報(bào)考情況,現(xiàn)從該市的全體考生(人數(shù)眾多)中隨機(jī)抽取3人,設(shè)3人中報(bào)考“經(jīng)濟(jì)類”專業(yè)的人數(shù)為隨機(jī)變量X,求隨機(jī)變量X的概率分布及數(shù)學(xué)期望.
附:參考數(shù)據(jù):

P(X2≥k)

0.05

0.010

k

3.841

6.635

(參考公式:X2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象如圖所示:

給出下列四個(gè)命題:

(1)方程有且僅有6個(gè)根;

(2)方程有且僅有3個(gè)根;

(3)方程有且僅有5個(gè)根;

(4)方程有且僅有4個(gè)根.

其中正確命題的個(gè)數(shù)是( )

A. 4個(gè)B. 3個(gè)C. 2個(gè)D. 1個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為準(zhǔn)備參加市運(yùn)動(dòng)會(huì),對(duì)本校高一、高二兩個(gè)田徑隊(duì)中30名跳高運(yùn)動(dòng)員進(jìn)行了測(cè)試,并用莖葉圖表示出本次測(cè)試30人的跳高成績(jī)(單位:cm).跳高成績(jī)?cè)?75cm以上(包括175cm)定義為“合格”,成績(jī)?cè)?75cm以下定義為“不合格”.

(1)如果從所有運(yùn)動(dòng)員中用分層抽樣抽取“合格”與“不合格”的人數(shù)共10人,問就抽取“合格”人數(shù)是多少?
(2)若從所有“合格”運(yùn)動(dòng)員中選取2名,用X表示所選運(yùn)動(dòng)員來自高一隊(duì)的人數(shù),試寫出X的分布圖,并求X的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在下列向量組中,可以把向量=(3,2)表示出來的是(   )

A. =(0,0),=(1,2)B. =(-1,2),=(5,-2)

C. =(3,5),=(6,10)D. =(2,-3),=(-2,3)

查看答案和解析>>

同步練習(xí)冊(cè)答案