【題目】已知函數(shù)f(x)sincos(ω>0),如果存在實(shí)數(shù)x0,使得對(duì)任意的實(shí)數(shù)x,都有f(x0﹣2020)≤f(x)≤f(x0)成立,則ω的最大值為( )
A.2020B.4040C.1010D.
【答案】A
【解析】
利用輔助角公式對(duì)函數(shù)化簡(jiǎn)可得f(x)sincos2sin(),由對(duì)任意的實(shí)數(shù)x,都有f(x0﹣2020)≤ f(x)≤ f(x0)成立可得,兩端點(diǎn)值分別為函數(shù)的最小值和最大值,要使得ω 最大,只要周期最大,當(dāng)2020,周期最大,代入即可求得解.
利用輔助角公式對(duì)函數(shù)化解可得f (x)sincos2sin(),
由對(duì)任意的實(shí)數(shù)x,對(duì)任意的實(shí)數(shù)x,都有f(x0﹣2020)≤ f(x)≤ f(x0)成立;
可得f(x0),f(x0-2020),分別為函數(shù)的最大值和最小值,
要使得ω最大,只要周期最大,
當(dāng)2020即T=4040=2ω時(shí),周期最大,此時(shí)ω=2020.
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】北京天壇的圜丘壇為古代祭天的場(chǎng)所,分上、中、下三層,上層中心有一塊圓形石板(稱為天心石),環(huán)繞天心石砌9塊扇面形石板構(gòu)成第一環(huán),向外每環(huán)依次增加9塊,下一層的第一環(huán)比上一層的最后一環(huán)多9塊,向外每環(huán)依次也增加9塊,已知每層環(huán)數(shù)相同,且下層比中層多729塊,則三層共有扇面形石板(不含天心石)( )
A.3699塊B.3474塊C.3402塊D.3339塊
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(2)當(dāng), 時(shí),對(duì)任意,有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正邊長(zhǎng)為3,點(diǎn)M,N分別是AB,AC邊上的點(diǎn),,如圖1所示.將沿MN折起到的位置,使線段PC長(zhǎng)為連接PB,如圖2所示.
(1)求證:平面平面BCNM;
(2)若點(diǎn)D在線段BC上,且,求平面PDM和平面PDC所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的極值;
(2)若函數(shù)在區(qū)間內(nèi)存在零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P﹣ABCD中,底面四邊形ABCD是一個(gè)菱形,且∠ABC,AB=2,PA⊥平面ABCD.
(1)若Q是線段PC上的任意一點(diǎn),證明:平面PAC⊥平面QBD.
(2)當(dāng)平面PBC與平面PDC所成的銳二面角的余弦值為時(shí),求PA的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在定義域上的最大值為,求實(shí)數(shù)的值;
(2)設(shè)函數(shù),當(dāng)時(shí),對(duì)任意的恒成立,求滿足條件的實(shí)數(shù)的最小整數(shù)值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年新年伊始,新型冠狀病毒來勢(shì)洶洶,疫情使得各地學(xué)生在寒假結(jié)束之后無法返校,教育部就此提出了線上教學(xué)和遠(yuǎn)程教學(xué),停課不停學(xué)的要求也得到了家長(zhǎng)們的贊同.各地學(xué)校開展各式各樣的線上教學(xué),某地學(xué)校為了加強(qiáng)學(xué)生愛國(guó)教育,擬開設(shè)國(guó)學(xué)課,為了了解學(xué)生喜歡國(guó)學(xué)是否與性別有關(guān),該學(xué)校對(duì)100名學(xué)生進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表:
喜歡國(guó)學(xué) | 不喜歡國(guó)學(xué) | 合計(jì) | |
男生 | 20 | 50 | |
女生 | 10 | ||
合計(jì) | 100 |
(1)請(qǐng)將上述列聯(lián)表補(bǔ)充完整,并判斷能否在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為喜歡國(guó)學(xué)與性別有關(guān)系?
(2)針對(duì)問卷調(diào)查的100名學(xué)生,學(xué)校決定從喜歡國(guó)學(xué)的人中按分層抽樣的方法隨機(jī)抽取6人成立國(guó)學(xué)宣傳組,并在這6人中任選2人作為宣傳組的組長(zhǎng),求選出的兩人均為女生的概率.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的內(nèi)角、、的對(duì)邊分別為、、,且.
(Ⅰ)求;
(Ⅱ)若,,如圖,為線段上一點(diǎn),且,求的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com