【題目】如圖,是邊長為的正方形,是的中點,點沿著路徑在正方形邊上運動所經(jīng)過的路程為,的面積為.
(1)求的解析式及定義域;
(2)求面積的最大值及此時點位置.
【答案】(1),函數(shù)的定義域為;
(2)面積的最大值為,此時點與點重合.
【解析】
(1)分點在線段(不包括點、)、(不包括點)、(不包括點),即對分、、三種情況討論,計算出關(guān)于的表達式,即可得出函數(shù)的解析式,并求出該函數(shù)的定義域;
(2)分段求出函數(shù)的每支函數(shù)的最大值,比較大小后得出函數(shù)的最大值,并求出對應(yīng)的的值,即可得出對應(yīng)的點的位置.
(1)①當點在線段(不包括點)時,,則,的高為,
此時,;
②當點在線段(不包括點)時,,,
的面積為,
的面積為,
直角梯形的面積為,
此時,的面積;
③當點在線段(不包括點)時,,的高為,
此時,.
綜上所述,,函數(shù)的定義域為;
(2)當時,,此時,函數(shù)單調(diào)遞增,則;
當時,,此時,函數(shù)單調(diào)遞減,則;
當時,,此時,函數(shù)單調(diào)遞減,則.
綜上所述,當時,函數(shù)取得最大值,即.
因此,當點與點重合時,的面積取到最大值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,且).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)在上的最大值.
【答案】(Ⅰ)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.(Ⅱ)當時, ;當時, .
【解析】【試題分析】(I)利用的二階導(dǎo)數(shù)來研究求得函數(shù)的單調(diào)區(qū)間.(II) 由(Ⅰ)得在上單調(diào)遞減,在上單調(diào)遞增,由此可知.利用導(dǎo)數(shù)和對分類討論求得函數(shù)在不同取值時的最大值.
【試題解析】
(Ⅰ),
設(shè) ,則.
∵, ,∴在上單調(diào)遞增,
從而得在上單調(diào)遞增,又∵,
∴當時, ,當時, ,
因此, 的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.
(Ⅱ)由(Ⅰ)得在上單調(diào)遞減,在上單調(diào)遞增,
由此可知.
∵, ,
∴.
設(shè),
則 .
∵當時, ,∴在上單調(diào)遞增.
又∵,∴當時, ;當時, .
①當時, ,即,這時, ;
②當時, ,即,這時, .
綜上, 在上的最大值為:當時, ;
當時, .
[點睛]本小題主要考查函數(shù)的單調(diào)性,考查利用導(dǎo)數(shù)求最大值. 與函數(shù)零點有關(guān)的參數(shù)范圍問題,往往利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間和極值點,并結(jié)合特殊點,從而判斷函數(shù)的大致圖像,討論其圖象與軸的位置關(guān)系,進而確定參數(shù)的取值范圍;或通過對方程等價變形轉(zhuǎn)化為兩個函數(shù)圖象的交點問題.
【題型】解答題
【結(jié)束】
22
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,圓的普通方程為. 在以坐標原點為極點,軸正半軸為極軸的極坐標系中,直線的極坐標方程為 .
(Ⅰ) 寫出圓 的參數(shù)方程和直線的直角坐標方程;
( Ⅱ ) 設(shè)直線 與軸和軸的交點分別為,為圓上的任意一點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某人在微信群中發(fā)了一個8元“拼手氣”紅包,被甲、乙、丙三人搶完,若三人均領(lǐng)到整數(shù)元,且每人至少領(lǐng)到1元,則甲領(lǐng)到的錢數(shù)不少于其他任何人的概率為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)有一組圓.下列四個命題正確的是( )
A. 存在,使圓與軸相切
B. 存在一條直線與所有的圓均相交
C. 存在一條直線與所有的圓均不相交
D. 所有的圓均不經(jīng)過原點
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)一種電子儀器的固定成本為20000元,每生產(chǎn)一臺儀器需增加投入100元,已知總收益滿足函數(shù): ,其中是儀器的月產(chǎn)量.(注:總收益=總成本+利潤)
(1)將利潤表示為月產(chǎn)量的函數(shù);
(2)當月產(chǎn)量為何值時,公司所獲利潤最大?最大利潤為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 依法納稅是每個公民應(yīng)盡的義務(wù),個人取得的所得應(yīng)依照《中華人民共和國個人所得稅法》向國家繳納個人所得稅(簡稱個稅).年月日起,個稅稅額根據(jù)應(yīng)納稅所得額、稅率和速算扣除數(shù)確定,計算公式為:個稅稅額=應(yīng)納稅所得額×稅率-速算扣除數(shù).①應(yīng)納稅所得額的計算公式為:應(yīng)納稅所得額=綜合所得收入額-基本減除費用-專項扣除-專項附加扣除-依法確定的其他扣除.②其中,“基本減除費用”(免征額)為每年元.稅率與速算扣除數(shù)見下表.
(1)設(shè)全年應(yīng)納稅所得額為,應(yīng)繳納個稅稅額為,求的解析式;
(2)小李全年綜合所得收入額為元,假定繳納的基本養(yǎng)老保險、基本醫(yī)療保險、失業(yè)保險等社會保險費和住房公積金占綜合所得收入額的比例分別是,,,,專項附加扣除是元,依法確定其他扣除是元,那么他全年應(yīng)繳納多少綜合所得個稅?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,定長為3的線段兩端點、分別在軸,軸上滑動,在線段上,且.
(1)求點的軌跡的方程;
(2)設(shè)點是軌跡上一點,從原點向圓作兩條切線分別與軌跡交于點,,直線,的斜率分別記為,.
①求證:;
②求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)甲、乙兩種產(chǎn)品所得的利潤分別為和(萬元),事先根據(jù)相關(guān)資料得出它們與投入資金(萬元)的數(shù)據(jù)分別如下表和圖所示:其中已知甲的利潤模型為,乙的利潤模型為.(為參數(shù),且).
(1)請根據(jù)下表與圖中數(shù)據(jù),分別求出甲、乙兩種產(chǎn)品所得的利潤與投入資金(萬元)的函數(shù)模型
(2)今將萬資金投入生產(chǎn)甲、乙兩種產(chǎn)品,并要求對甲、乙兩種產(chǎn)品的投入資金都不低于萬元.設(shè)對乙種產(chǎn)品投入資金(萬元),并設(shè)總利潤為(萬元),如何分配投入資金,才能使總利潤最大?并求出最大總利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的定義域為,若存在區(qū)間,使得稱區(qū)間為函數(shù)的“和諧區(qū)間”.
(1)請直接寫出函數(shù)的所有的“和諧區(qū)間”;
(2)若為函數(shù)的一個“和諧區(qū)間”,求的值;
(3)求函數(shù)的所有的“和諧區(qū)間”.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com