【題目】已知函數(shù),.

(1)當(dāng)時(shí),若對任意均有成立,求實(shí)數(shù)的取值范圍;

(2)設(shè)直線與曲線和曲線相切,切點(diǎn)分別為,,其中.

①求證:;

②當(dāng)時(shí),關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍.

【答案】(Ⅰ);(①證明見解析;

【解析】試題分析:(Ⅰ)根據(jù)題意,可得不等式,由于,則,

利用導(dǎo)數(shù)法,分別函數(shù)的最小值,的最大值,從而可確定實(shí)數(shù)的取值范圍;(根據(jù)題意,由函數(shù),的導(dǎo)數(shù)與切點(diǎn)分別給出切線的方程,由于切線相同,則其斜率與在軸上的截距相等,建立方程組,由,從而可證;②將不等式,轉(zhuǎn)化為,構(gòu)造函數(shù),由函數(shù)的單調(diào)性求其最大值,從而問題得于解決.

試題解析:(Ⅰ):當(dāng)時(shí):

知:

依題意:恒成立

設(shè)

當(dāng)時(shí);當(dāng)時(shí),

設(shè)

當(dāng)時(shí);當(dāng)時(shí),

故:實(shí)數(shù)k的取值范圍是

(Ⅱ)由已知:,

①:由得:

得:

,,故:

②:由①知:

得:,

設(shè)

為減函數(shù),

得:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓為左右焦點(diǎn),為短軸端點(diǎn),長軸長為4,焦距為,且,的面積為.

(Ⅰ)求橢圓的方程

(Ⅱ)設(shè)動(dòng)直線橢圓有且僅有一個(gè)公共點(diǎn),且與直線相交于點(diǎn).試探究:在坐標(biāo)平面內(nèi)是否存在定點(diǎn),使得以為直徑的圓恒過點(diǎn)?若存在求出點(diǎn)的坐標(biāo),若不存在.請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義域在上的奇函數(shù),且

1)用定義證明:函數(shù)上是增函數(shù),

2)若實(shí)數(shù)滿足,求實(shí)數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)EF分別是正方體ABCDA1B1C1D1的棱DC上兩點(diǎn),且AB=2,EF=1,給出下列四個(gè)命題:

三棱錐D1B1EF的體積為定值;

異面直線D1B1EF所成的角為45°;

D1B1⊥平面B1EF;

直線D1B1與平面B1EF所成的角為60°.

其中正確的命題為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓)的左右焦點(diǎn)分別為,關(guān)于直線的對稱點(diǎn)在直線上.

(1)求橢圓的離心率;

(2)若的長軸長為且斜率為的直線交橢圓于,兩點(diǎn),問是否存在定點(diǎn),使得,的斜率之和為定值?若存在,求出所有滿足條件的點(diǎn)坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=﹣alnx+(a+1)x﹣(a>0).

(1)討論函數(shù)f(x)的單調(diào)性;

(2)若f(x)≥﹣+ax+b恒成立,求a時(shí),實(shí)數(shù)b的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知菱形,軸上且, ).

Ⅰ)求點(diǎn)軌跡的方程;

Ⅱ)延長交軌跡于點(diǎn),軌跡在點(diǎn)處的切線與直線交于點(diǎn),試判斷以為圓心,線段為半徑的圓與直線的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為保護(hù)農(nóng)民種糧收益,促進(jìn)糧食生產(chǎn),確保國家糧食安全,調(diào)動(dòng)廣大農(nóng)民糧食生產(chǎn)的積極性,從2004年開始,國家實(shí)施了對種糧農(nóng)民直接補(bǔ)貼.通過對2014~2018年的數(shù)據(jù)進(jìn)行調(diào)查,發(fā)現(xiàn)某地區(qū)發(fā)放糧食補(bǔ)貼額(億元)與該地區(qū)糧食產(chǎn)量(萬億噸)之間存在著線性相關(guān)關(guān)系.統(tǒng)計(jì)數(shù)據(jù)如下表:

年份

2014年

2015年

2016年

2017年

2018年

補(bǔ)貼額億元

9

10

12

11

8

糧食產(chǎn)量萬億噸

23

25

30

26

21

(1)請根據(jù)如表所給的數(shù)據(jù),求出關(guān)于的線性回歸直線方程;

(2)通過對該地區(qū)糧食產(chǎn)量的分析研究,計(jì)劃2019年在該地區(qū)發(fā)放糧食補(bǔ)貼額7億元,請根據(jù)(1)中所得的線性回歸直線方程,預(yù)測2019年該地區(qū)的糧食產(chǎn)量.

(參考公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中中,直線,圓的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系.

(1)求直線和圓的極坐標(biāo)方程;

(2)若直線與圓交于兩點(diǎn),且的面積是,求實(shí)數(shù)的值.

查看答案和解析>>

同步練習(xí)冊答案