【題目】網(wǎng)購是當(dāng)前民眾購物的新方式,某公司為改進營銷方式,隨機調(diào)査了100名市民,統(tǒng)計其周平均網(wǎng)購
的次數(shù),并整理得到如右的頻數(shù)直方圖,將周平均網(wǎng)購次數(shù)不小于4次的民眾稱為網(wǎng)購迷.這100名市民中,年齡不超過40歲的有65人,且網(wǎng)購迷中有5名市民的年齡超過40歲
(1)根據(jù)已知條件完成下面的2×2列聯(lián)表,能否在犯錯誤的概率不超過0.10的前提條件下認為網(wǎng)購迷與年齡不超過40歲有關(guān)?
(2)現(xiàn)從網(wǎng)購迷中按分層抽樣選5人代表進一步進行調(diào)查,若從5人代表中任意挑選2人,求挑選的2人中有年齡超過40歲的概率
【答案】(1)見解析;(2)
【解析】
(1)根據(jù)已知條件中的數(shù)據(jù)填寫列聯(lián)表,由公式計算,然后與表格中的臨界值比較可得結(jié)論;(2)由列舉法得到基本事件總數(shù),然后由古典概型的概率公式計算即可.
(1)根據(jù)已知條件完成2×2列聯(lián)表,如下:
網(wǎng)購迷 | 非網(wǎng)購迷 | 合計 | |
年齡不超過40歲 | 20 | 45 | 65 |
年齡超過40歲 | 5 | 30 | 35 |
合計 | 25 | 75 | 100 |
計算,
因為3.297>2.706,
所以據(jù)此列聯(lián)表判斷,能在犯錯誤的概率不超過0.10的前提下,認為網(wǎng)購迷與年齡不超過40歲有關(guān).
(2)由頻數(shù)分布直方圖知,網(wǎng)購迷共有25人,現(xiàn)從網(wǎng)購迷中按分層抽樣選5人代表,記其中年齡超過40歲的1名市民為,其余4名年齡不超過40歲的市民為,現(xiàn)從5人中任取2人,基本事件是共有10種,
其中有市民年齡超過40歲的基本事件是共4種,
故所求的概率為,.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), ,其中a>1.
(I)求函數(shù)的單調(diào)區(qū)間;
(II)若曲線在點處的切線與曲線在點 處的切線平行,證明;
(III)證明當(dāng)時,存在直線l,使l是曲線的切線,也是曲線的切線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為擴大教學(xué)規(guī)模,從今年起擴大招生,現(xiàn)有學(xué)生人數(shù)為人,以后學(xué)生人數(shù)年增長率為.該校今年年初有舊實驗設(shè)備套,其中需要換掉的舊設(shè)備占了一半.學(xué)校決定每年以當(dāng)年年初設(shè)備數(shù)量的的增長率增加新設(shè)備,同時每年淘汰套舊設(shè)備.
(1)如果10年后該校學(xué)生的人均占有設(shè)備的比率正好比目前翻一番,那么每年應(yīng)更換的舊設(shè)備是多少套?
(2)依照(1)的更換速度,共需多少年能更換所有需要更換的舊設(shè)備?
下列數(shù)據(jù)提供計算時參考:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)的10件產(chǎn)品中,有8件合格品、2件不合格品,合格品與不合格品在外觀上沒有區(qū)別.從這10件產(chǎn)品中任意抽檢2件,計算:
(1)抽出的2件產(chǎn)品恰好都是合格品的抽法有多少種?
(2)抽出的2件產(chǎn)品至多有1件不合格品的抽法有多少種?
(3)如果抽檢的2件產(chǎn)品都是不合格品,那么這批產(chǎn)品將被退貨,求這批產(chǎn)品被退貨的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在以原點O為極點;x軸的非負半軸為極軸的極坐標(biāo)系中,曲線C1的極坐標(biāo)方程為,曲線C2的極坐標(biāo)方程為
(1)求曲線C2的直角坐標(biāo)方程;
(2)過原點O且傾斜角為 的射線l與曲線C1,C2分別相交于A,B兩點(A,B異于原點),求的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)在R上為偶函數(shù)且在單調(diào)遞減,若時,不等式恒成立,則實數(shù)m的取值范圍為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列是公比為正數(shù)的等比數(shù)列,,;數(shù)列的前項和為,滿足,.
(1)求,;
(2)求數(shù)列,的通項公式;
(3)求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時,若恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com