【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)F是橢圓C1ab0)的一個焦點(diǎn),點(diǎn)D是橢圓上的一個動點(diǎn),且|FD|[1,3]

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)過點(diǎn)P(﹣4,0)作直線交橢圓CA,B兩點(diǎn),求△AOB面積的最大值.

【答案】(Ⅰ):1;(Ⅱ)2

【解析】

(Ⅰ)由點(diǎn)是橢圓上的一個動點(diǎn),且可得:可解得:即可求得橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)由題意設(shè)直線的方程為,聯(lián)立

,得,由韋達(dá)定理、點(diǎn)到直線距離公式等,結(jié)合已知條件能求出面積的最大值.

(Ⅰ)由點(diǎn)D是橢圓上的一個動點(diǎn),且|FD|[1,3]可得:ac1,a+c3a2b2+c解得:a24,b23,

所以橢圓的標(biāo)準(zhǔn)方程:1;

(Ⅱ)顯然直線AB的斜率不為零,設(shè)直線AB的方程:xmy4,Axy),Bx',y'),

聯(lián)立與橢圓的方程整理得:(4+3m2y224my+360,

△=(﹣24m24364+3m2)>0,整理得m24,且y+y'yy'

|AB|12

O到直線AB的距離d,

所以SAOB|AB|d48482

當(dāng)且僅當(dāng),即時等號成立,

所以△AOB面積的最大值:2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)高三年級有學(xué)生500人,其中男生300人,女生200人。為了研究學(xué)生的數(shù)學(xué)成績是否與性別有關(guān),采用分層抽樣的方法,從中抽取了100名學(xué)生,統(tǒng)計了他們期中考試的數(shù)學(xué)分?jǐn)?shù),然后按照性別分為男、女兩組,再將兩組的分?jǐn)?shù)分成5組: 分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖。

(I)從樣本分?jǐn)?shù)小于110分的學(xué)生中隨機(jī)抽取2人,求兩人恰為一男一女的概率;

(II)若規(guī)定分?jǐn)?shù)不小于130分的學(xué)生為“數(shù)學(xué)尖子生”,請你根據(jù)已知條件完成2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為“數(shù)學(xué)尖子生與性別有關(guān)”?

附表:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)若.

①當(dāng)時,證明:;

②若有兩個不相等的零點(diǎn),且,證明:;

2)討論的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1)當(dāng)時,求的最大值和最小值;

2)求實(shí)數(shù)的取值范圍,使在區(qū)間上是單調(diào)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】成書于公元一世紀(jì)的我國經(jīng)典數(shù)學(xué)著作《九章算術(shù)》中有這樣一道名題,就是“引葭赴岸”問題,題目是:“今有池方一丈,點(diǎn)生其中央,出水一尺,引葭趕岸,適馬岸齊,問水深,葭長各幾何?”題意是:有一正方形池塘,邊長為一丈(10尺),有棵蘆葦長在它的正中央,高出水面部分有1尺長,把蘆葦拉向岸邊,恰好碰到沿岸(池塘一邊的中點(diǎn)),則水深為__________尺,蘆葦長__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在傳染病學(xué)中,通常把從致病刺激物侵入機(jī)體或者對機(jī)體發(fā)生作用起,到機(jī)體出現(xiàn)反應(yīng)或開始呈現(xiàn)該疾病對應(yīng)的相關(guān)癥狀時止的這一階段稱為潛伏期. 一研究團(tuán)隊(duì)統(tǒng)計了某地區(qū)1000名患者的相關(guān)信息,得到如下表格:

潛伏期(單位:天)

人數(shù)

1)求這1000名患者的潛伏期的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

2)該傳染病的潛伏期受諸多因素的影響,為研究潛伏期與患者年齡的關(guān)系,以潛伏期是否超過6天為標(biāo)準(zhǔn)進(jìn)行分層抽樣,從上述1000名患者中抽取200人,得到如下列聯(lián)表. 請將列聯(lián)表補(bǔ)充完整,并根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為潛伏期與患者年齡有關(guān);

潛伏期

潛伏期

總計

50歲以上(含50歲)

50歲以下

55

總計

200

3)以這1000名患者的潛伏期超過6天的頻率,代替該地區(qū)1名患者潛伏期超過6天發(fā)生的概率,每名患者的潛伏期是否超過6天相互獨(dú)立. 為了深入研究,該研究團(tuán)隊(duì)隨機(jī)調(diào)查了名患者,其中潛伏期超過6天的人數(shù)最有可能即概率最大)是多少?

附:

,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A是圓Ox2+y24上一動點(diǎn),過點(diǎn)AABx軸,垂足為B,動點(diǎn)D滿足.

1)求動點(diǎn)D的軌跡C的方程;

2)垂直于x軸的直線M交軌跡CMN兩點(diǎn),點(diǎn)P3,0),直線PM與軌跡C的另一個交點(diǎn)為Q.問:直線NQ是否過一定點(diǎn)?若過定點(diǎn),求出該定點(diǎn)的坐標(biāo);若不過定點(diǎn),請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一片森林原來面積為,計劃每年砍伐一些樹,且每年砍伐面積的百分比相等,當(dāng)砍伐到面積的一半時,所用時間是10年,為保護(hù)生態(tài)環(huán)境,森林面積至少要保留原面積的,已知到今年為止,森林剩余面積為原來的.

1)到今年為止,該森林已砍伐了多少年?

2)今后最多還能砍伐多少年?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校共有名學(xué)生,其中男生人,為了解該校學(xué)生在學(xué)校的月消費(fèi)情況,采取分層抽樣隨機(jī)抽取了名學(xué)生進(jìn)行調(diào)查,月消費(fèi)金額分布在之間.根據(jù)調(diào)查的結(jié)果繪制的學(xué)生在校月消費(fèi)金額的頻率分布直方圖如圖所示:

將月消費(fèi)金額不低于元的學(xué)生稱為高消費(fèi)群

1)求的值,并估計該校學(xué)生月消費(fèi)金額的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

2)現(xiàn)采用分層抽樣的方式從月消費(fèi)金額落在,內(nèi)的兩組學(xué)生中抽取人,再從這人中隨機(jī)抽取人,記被抽取的名學(xué)生中屬于高消費(fèi)群的學(xué)生人數(shù)為隨機(jī)變量,求的分布列及數(shù)學(xué)期望;

3)若樣本中屬于高消費(fèi)群的女生有人,完成下列列聯(lián)表,并判斷是否有的把握認(rèn)為該校學(xué)生屬于高消費(fèi)群性別有關(guān)?

(參考公式:,其中

查看答案和解析>>

同步練習(xí)冊答案