【題目】在平面直角坐標系中,直線與拋物線相交于不同的兩點.
(1)如果直線過拋物線的焦點,求的值;
(2)如果 ,證明:直線必過一定點,并求出該定點.
【答案】(1) .
(2)證明見解析; .
【解析】試題分析:解決直線和拋物線的綜合問題時注意:第一步:根據(jù)題意設直線方程,有的題設條件已知點,而斜率未知;有的題設條件已知斜率,點不定,可由點斜式設直線方程.第二步:聯(lián)立方程:把所設直線方程與拋物線的方程聯(lián)立,消去一個元,得到一個一元二次方程.第三步:求解判別式:計算一元二次方程根.第四步:寫出根與系數(shù)的關(guān)系.第五步:根據(jù)題設條件求解問題中結(jié)論.
試題解析:(1)由題意:拋物線焦點為(1,0),設l:x=ty+1,代入拋物線y2=4x,消去x得y2-4ty-4=0,設A(x1,y1),B(x2,y2),則y1+y2=4t,y1y2=-4,
∴·=x1x2+y1y2=(ty1+1)(ty2+1)+y1y2=t2y1y2+t(y1+y2)+1+y1y2=-4t2+4t2+1-4=-3. ----6分
(2)設l:x=ty+b代入拋物線y2=4x,消去x得y2-4ty-4b=0,設A(x1,y1),B(x2,y2),
則y1+y2=4t,y1y2=-4b,
∴·=x1x2+y1y2=(ty1+b)(ty2+b)+y1y2=t2y1y2+bt(y1+y2)+b2+y1y2=-4bt2+4bt2+b2-4b=b2-4b.令b2-4b=-4,∴b2-4b+4=0,∴b=2,∴直線l過定點(2,0).∴若·=-4,則直線l必過一定點.
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)給出下列四個命題:
①c = 0時,是奇函數(shù); ②時,方程只有一個實根;
③的圖象關(guān)于點(0 , c)對稱; ④方程至多3個實根.
其中正確的命題個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在中,角A,B,C的對邊分別為a,b,c,R表示的外接圓半徑.
(Ⅰ)如圖,在以O圓心、半徑為2的O中,BC和BA是O的弦,其中,求弦AB的長;
(Ⅱ)在中,若是鈍角,求證:;
(Ⅲ)給定三個正實數(shù)a、b、R,其中,問:a、b、R滿足怎樣的關(guān)系時,以a、b為邊長,R為外接圓半徑的不存在、存在一個或存在兩個(全等的三角形算作同一個)?在存在的情況下,用a、b、R表示c.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】求使下列函數(shù)取得最大值、最小值的自變量x的集合,并分別寫出最大值、最小值:
(1)y=3-2sin x;
(2)y=sin.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)的圖像可以由y=cos2x的圖像先縱坐標不變橫坐標伸長到原來的2倍,再橫坐標不變縱坐標伸長到原來的2倍,最后向右平移個單位而得到.
⑴求f(x)的解析式與最小正周期;
⑵求f(x)在x∈(0,π)上的值域與單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sinx,若存在x1 , x2 , …,xn滿足0≤x1<x2<…<xn≤nπ,n∈N+ , 且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(xm﹣1)﹣f(xm)|=12,(m≥2,m∈N+),當m取最小值時,n的最小值為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2 sin( + )sin( ﹣ )﹣sin(π+x),且函數(shù)y=g(x)的圖象與函數(shù)y=f(x)的圖象關(guān)于直線x= 對稱.
(1)若存在x∈[0, ),使等式[g(x)]2﹣mg(x)+2=0成立,求實數(shù)m的最大值和最小值
(2)若當x∈[0, ]時不等式f(x)+ag(﹣x)>0恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若f(x)是定義在(0,+∞)上的增函數(shù),且對一切x,y>0,滿足.
(1)求f(1)的值;
(2)若f(6)=1,解不等式f(x+3)-f()<2.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,a,b,c分別是三內(nèi)角A,B,C所對應的三邊,已知b2+c2=a2+bc
(1)求角A的大;
(2)若 ,試判斷△ABC的形狀.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com