【題目】在△ABC中,a,b,c分別是三內(nèi)角A,B,C所對應(yīng)的三邊,已知b2+c2=a2+bc
(1)求角A的大。
(2)若 ,試判斷△ABC的形狀.

【答案】
(1)解:在△ABC中,∵b2+c2=a2+bc,

∴b2+c2﹣a2=bc,

,

∴cosA= ,

又A是三角形的內(nèi)角,故A=


(2)解:∵

∴1﹣cosB+1﹣cosC=1∴cosB+cosC=1,

由(1)的結(jié)論知,A= ,故B+C=

∴cosB+cos( ﹣B)=1,

即cosB+cos cosB+sin sinB=1,

∴sin(B+ )=1,

又0<B< ,∴ <B+

∴B+ =

∴B= ,C=

故△ABC是等邊三角形


【解析】(1)將b2+c2=a2+bcb2+c2﹣a2=bc ,由同性結(jié)合余弦定理知cosA= ,可求出A的大;(2)用半角公式對 進(jìn)行變形,其可變?yōu)閏osB+cosC=1,又由(1)的結(jié)論知,A= ,故B+C= ,與cosB+cosC=1聯(lián)立可求得B,C的值,由角判斷△ABC的形狀.
【考點精析】解此題的關(guān)鍵在于理解同角三角函數(shù)基本關(guān)系的運用的相關(guān)知識,掌握同角三角函數(shù)的基本關(guān)系:;;(3) 倒數(shù)關(guān)系:,以及對余弦定理的定義的理解,了解余弦定理:;;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線與拋物線相交于不同的兩點.

(1)如果直線過拋物線的焦點,求的值;

(2)如果 ,證明:直線必過一定點,并求出該定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=lnx﹣ ax2﹣bx,若x=1是f(x)的極大值點,則a的取值范圍為(
A.(﹣1,0)
B.(﹣1,+∞)
C.(0,+∞)
D.(﹣∞,﹣1)∪(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)是定義在實數(shù)集R上的函數(shù),且y=f(x+1)是偶函數(shù),當(dāng)x1時,f(x)=2x﹣1,則f(),f(),f()的大小關(guān)系是(  )

A. f()<f()<f( B. f()<f()<f(

C. f()<f()<f( D. f()<f()<f(

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知函數(shù)f(x)=xlnx.
(1)求曲線f(x)在點(1,f(1))處的切線方程;
(2)對x≥1,f(x)≤m(x2﹣1)成立,求實數(shù)m的最小值;
(3)證明:1n .(n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域為,對任意實數(shù),都有

(1)求的值并判斷函數(shù)的奇偶性;

(2)已知函數(shù),

驗證函數(shù)是否滿足題干中的條件,即驗證對任意實數(shù),是否成立;

若函數(shù),其中討論函數(shù)的零點個數(shù)情況

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位共有老、中、青職工430,其中青年職工160人,中年職工人數(shù)是老年職工人數(shù)的2倍。為了解職工身體狀況,現(xiàn)采用分層抽樣方法進(jìn)行調(diào)查,在抽取的樣本中有青年職工32人,則該樣本中的老年職工人數(shù)為

A. 9 B. 18 C. 27 D. 36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為棱長的正方體, 為棱的中點.

(1)求三棱錐的體積;

(2)求證: 平面.

【答案】(1);(2)見解析.

【解析】試題分析:(1)高為ED,再根據(jù)錐體體積公式計算體積(2)連接于點,根據(jù)三角形中位線性質(zhì)得,再根據(jù)線面平行判定定理得結(jié)論

試題解析:(1)體積

(2)連接于點,則的中位線,即,

, ,得到 平面.

型】解答
結(jié)束】
18

【題目】已知拋物線 的焦點為圓的圓心.

(1)求拋物線的標(biāo)準(zhǔn)方程;

(2)若斜率的直線過拋物線的焦點與拋物線相交于兩點,求弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為研究冬季晝夜溫差大小對某反季節(jié)大豆新品種發(fā)芽率的影響,某農(nóng)科所記錄了5組晝夜溫差與100顆種子發(fā)芽數(shù),得到如下資料:

組號

1

2

3

4

5

溫差

10

11

13

12

8

發(fā)芽數(shù)(顆)

23

25

30

26

16

該所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求出線性回歸方程,再對被選取的2組數(shù)據(jù)進(jìn)行檢驗.

1)若選取的是第1組與第5組的兩組數(shù)據(jù),請根據(jù)第2組至第4組的數(shù)據(jù),求出關(guān)于的線性回歸方程;

2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?

(參考公式:,

查看答案和解析>>

同步練習(xí)冊答案