【題目】如圖,在直三棱柱中,底面是邊長為的等邊三角形, 為的中點,側(cè)棱,點在上,點在上,且, .
(1)證明:平面平面;
(2)求二面角的余弦值.
【答案】(1)見解析(2)
【解析】試題分析:(1)根據(jù)平幾知識得,由線面垂直得,最后根據(jù)線面垂直判定定理以及面面垂直判定定理得結(jié)論,(2)先根據(jù)條件建立空間直角坐標系,設立各點坐標,根據(jù)方程組解各面法向量,根據(jù)向量數(shù)量積求向量夾角,最后根據(jù)二面角與向量夾角相等或互補關系確定二面角的余弦值.
試題解析:(1)∵是等邊三角形, 為的中點,
∴,∴平面,得.①
在側(cè)面中,
, ,
∴,
∴,∴.②
結(jié)合①②,又∵,∴平面,
又∵平面,∴平面平面
(2)解法一:如圖建立空間直角坐標系.
則, , .
得, ,
設平面的法向量,則
即得取.
同理可得,平面的法向量
∴
則二面角的余弦值為.
解法二:由(1)知平面,∴, .
∴即二面角的平面角
在平面中,易知,∴,
設,∵
∴,解得.
即,∴
則二面角的余弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,且過點.
(Ⅰ)求橢圓的方程.
(Ⅱ)若, 是橢圓上兩個不同的動點,且使的角平分線垂直于軸,試判斷直線的斜率是否為定值?若是,求出該值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓:和點,動圓經(jīng)過點且與圓相切,圓心的軌跡為曲線.
(Ⅰ)求曲線的方程;
(Ⅱ)四邊形的頂點在曲線上,且對角線均過坐標原點,若 .
(i) 求的范圍;(ii) 求四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司計劃在辦公大廳建一面長為米的玻璃幕墻.先等距安裝根立柱,然后在相鄰的立柱之間安裝一塊與立柱等高的同種規(guī)格的玻璃.一根立柱的造價為6400元,一塊長為米的玻璃造價為元.假設所有立柱的粗細都忽略不計,且不考慮其他因素,記總造價為元(總造價=立柱造價+玻璃造價).
(1)求關于的函數(shù)關系式;
(2)當時,怎樣設計能使總造價最低?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), 為自然對數(shù)的底數(shù).
(1)若當時, 恒成立,求的取值范圍;
(2)設,若對恒成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)的一段圖象如圖所示
(1)求的解析式;
(2)求的單調(diào)增區(qū)間,并指出的最大值及取到最大值時的集合;
(3)把的圖象向左至少平移多少個單位,才能使得到的圖象對應的函數(shù)為偶函數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列四個結(jié)論中正確的個數(shù)是
(1)對于命題使得,則都有;
(2)已知,則
(3)已知回歸直線的斜率的估計值是2,樣本點的中心為(4,5),則回歸直線方程為;
(4)“”是“”的充分不必要條件.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com