精英家教網 > 高中數學 > 題目詳情

【題目】選修4-4:坐標系與參數方程

在極坐標系中,曲線的極坐標方程為,以極點為原點,極軸為軸的正半軸建立平面直角坐標系,直線的參數方程為為參數).

(1)寫出曲線的參數方程和直線的普通方程;

(2)已知點是曲線上一點,求點到直線的最小距離.

【答案】(1)詳見解析;(2) .

【解析】試題分析: (1)由極坐標與直角坐標互化公式可得曲線的直角坐標方程,再由為參數)可得其參數方程;消去參數可得直線的普通方程;

(2)設曲線上任意一點。則由點線距離公式即余弦函數的最小值可求點到直線的最小距離.

試題解析:

(1)由曲線的極坐標方程得:

曲線的直角坐標方程為: ,曲線的參數方程為為參數)

直線的普通方程為: .

()設曲線上任意一點,則

到直線的距離為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知點A(﹣2,0),B(2,0),C(0,2),直線y=ax+b(a>0)將△ABC分割為面積相等的兩部分,則b的取值范圍是(
A.(0,
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖方莖葉圖記錄了甲、乙兩組各5名學生在一次英語聽力測試中的成績(單位:分).已知甲組數據的中位數為l5,乙組數據的平均數為16.8,則x+y的值為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用(基準保費)統一為元,在下一年續(xù)保時,實行的是費率浮動機制,保費與上一年度車輛發(fā)生道路交通事故的情況相聯系,發(fā)生交通事故的次數越多,費率也就越高,具體浮動情況如表:

交強險浮動因素和浮動費率比率表

浮動因素

浮動比率

上一個年度未發(fā)生有責任道路交通事故

下浮10%

上兩個年度未發(fā)生有責任道路交通事故

下浮20%

上三個及以上年度未發(fā)生有責任道路交通事故

下浮30%

上一個年度發(fā)生一次有責任不涉及死亡的道路交通事故

0%

上一個年度發(fā)生兩次及兩次以上有責任道路交通事故

上浮10%

上一個年度發(fā)生有責任道路交通死亡事故

上浮30%

某機構為了研究某一品牌普通6座以下私家車的投保情況,隨機抽取了60輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統計得到了下面的表格:

類型

數量

10

5

5

20

15

5

以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:

按照我國《機動車交通事故責任強制保險條例》汽車交強險價格的規(guī)定, .某同學家里有一輛該品牌車且車齡剛滿三年,記為該品牌車在第四年續(xù)保時的費用,求的分布列與數學期望值;(數學期望值保留到個位數字)

某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車.假設購進一輛事故車虧損5000元,一輛非事故車盈利10000元:

①若該銷售商購進三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;

②若該銷售商一次購進100輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校從高一年級學生中隨機抽取40中學生,將他們的期中考試數學成績(滿分100分,成績均為不低于40分的整數)分成六段: ,, 所得到如圖所示的頻率分布直方圖.

(1)求圖中實數的值;

(2)若該校高一年級共有640人,試估計該校高一年級期中考試數學成績不低于60分的人數;

(3)若從數學成績在兩個分數段內的學生中隨機選取2名學生,求這2名學生的數學成績之差的絕對值不大于10的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】與圓(x﹣3)2+(y﹣3)2=8相切,且在x、y軸上截距相等的直線有(
A.4條
B.3條
C.2條
D.1條

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知一組數據按從小到大順序排列,得到﹣1,0,4,x,7,14中位數為5,則這組數據的平均數為 , 方差為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】多面體, , , , , 在平面上的射影是線段的中點.

(1)求證:平面平面;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設圓C滿足三個條件①過原點;②圓心在y=x上;③截y軸所得的弦長為4,求圓C的方程.

查看答案和解析>>

同步練習冊答案