【題目】在平面直角坐標系中,圓的參數(shù)方程為,(t為參數(shù)),在以原點O為極點,軸的非負半軸為極軸建立的極坐標系中,直線的極坐標方程為,兩點的極坐標分別為.
(1)求圓的普通方程和直線的直角坐標方程;
(2)點是圓上任一點,求面積的最小值.
【答案】(1),;(2)4
【解析】試題分析:(1)由圓C的參數(shù)方程消去t得到圓C的普通方程,由直線l的極坐標方程,利用兩角和與差的余弦函數(shù)公式化簡,根據(jù)轉(zhuǎn)化為直角坐標方程即可;(2)將A與B的極坐標化為直角坐標,并求出|AB|的長,根據(jù)P在圓C上,設出P坐標,利用點到直線的距離公式表示出P到直線l的距離,利用余弦函數(shù)的值域確定出最小值,即可確定出三角形PAB面積的最小值.
試題解析:
(1)由消去參數(shù)t,得,
所以圓C的普通方程為.
由,得,換成直角坐標系為,
所以直線l的直角坐標方程為
(2)化為直角坐標為在直線l上,
并且,設P點的坐標為,
則P點到直線l的距離為,
,所經(jīng)面積的最小值是
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.(為自然對數(shù)的底數(shù))
(1)設;
①若函數(shù)在處的切線過點,求的值;
②當時,若函數(shù)在上沒有零點,求的取值范圍.
(2)設函數(shù),且,求證:當時,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,平面平面,,,,,點在棱上,且.
(Ⅰ)求證:;
(Ⅱ)是否存在實數(shù),使得二面角的余弦值為?若存在,求出實數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)函數(shù)的圖象與的圖象無公共點,求實數(shù)的取值范圍;
(Ⅱ)是否存在實數(shù),使得對任意的,都有函數(shù)的圖象在的圖象的下方?若存在,請求出整數(shù)的最大值;若不存在,請說理由.
(參考數(shù)據(jù):,,).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線的左,右焦點分別為,若雙曲線上存在點,使,則該雙曲線的離心率范圍為( )
A. (1,1) B. (1,1) C. (1,1] D. (1,1]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,圓的參數(shù)方程為,(t為參數(shù)),在以原點O為極點,軸的非負半軸為極軸建立的極坐標系中,直線的極坐標方程為,兩點的極坐標分別為.
(1)求圓的普通方程和直線的直角坐標方程;
(2)點是圓上任一點,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(其中為參數(shù)),曲線,以坐標原點為極點,以軸正半軸為極軸建立極坐標系.
(1)求曲線的普通方程和曲線的極坐標方程;
(2)若射線與曲線,分別交于兩點,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【2018山西太原市高三3月模擬】已知橢圓的左、右頂點分別為,右焦點為,點在橢圓上.
(I)求橢圓方程;
(II)若直線與橢圓交于兩點,已知直線與相交于點,證明:點在定直線上,并求出定直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), .
(1)當時,討論函數(shù)的單調(diào)性;
(2)當時,求證:函數(shù)有兩個不相等的零點, ,且.
【答案】(1)見解析;(2)見解析
【解析】試題分析:(1)討論函數(shù)單調(diào)區(qū)間即解導數(shù)大于零求得增區(qū)間,導數(shù)小于零求得減區(qū)間(2)函數(shù)有兩個不同的零點,先分析函數(shù)單調(diào)性得零點所在的區(qū)間, 在上單調(diào)遞增,在上單調(diào)遞減.∵, , ,∴函數(shù)有兩個不同的零點,且一個在內(nèi),另一個在內(nèi).
不妨設, ,要證,即證, 在上是增函數(shù),故,且,即證. 由,得 ,
令 , ,得在上單調(diào)遞減,∴,且∴, ,∴,即∴,故得證
解析:(1)當時, ,得,
令,得或.
當時, , ,所以,故在上單調(diào)遞減;
當時, , ,所以,故在上單調(diào)遞增;
當時, , ,所以,故在上單調(diào)遞減;
所以在, 上單調(diào)遞減,在上單調(diào)遞增.
(2)證明:由題意得,其中,
由得,由得,
所以在上單調(diào)遞增,在上單調(diào)遞減.
∵, , ,
∴函數(shù)有兩個不同的零點,且一個在內(nèi),另一個在內(nèi).
不妨設, ,
要證,即證,
因為,且在上是增函數(shù),
所以,且,即證.
由,得 ,
令 , ,
則 .
∵,∴, ,
∴時, ,即在上單調(diào)遞減,
∴,且∴, ,
∴,即∴,故得證.
【題型】解答題
【結(jié)束】
22
【題目】已知曲線的參數(shù)方程為(為參數(shù)).以平面直角坐標系的原點為極點, 軸的正半軸為極軸,取相同的單位長度建立極坐標系,設直線的極坐標方程為.
(1)求曲線和直線的普通方程;
(2)設為曲線上任意一點,求點到直線的距離的最值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com