精英家教網 > 高中數學 > 題目詳情

【題目】已知函數只有一個零點,且這個零點為正數,則實數的取值范圍是____

【答案】

【解析】

先運用導數得出函數的單調性和單調區(qū)間,再結合函數圖象求出a的取值范圍.

解:令=3x2﹣3a2=3(xa)(x+a)=0,解得x1=﹣a,x2a,

其中a>0,所以函數的單調性和單調區(qū)間如下:

x∈(﹣∞,﹣a),fx)遞增;x∈(﹣a,a),fx)遞減;x∈(a,+∞),fx)遞增.

因此,fx)在x=﹣a處取得極大值,在xa處取得極小值,

結合函數圖象,要使fx)只有一個零點x0,且x0>0,只需滿足:

fx極大值f(﹣a)<0,即﹣a3+3a3﹣6a2+4a<0,

整理得aa﹣1)(a﹣2)<0,解得,a∈(1,2),

故答案為:(1,2)

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,焦距為.斜率為k的直線l與橢圓M有兩個不同的交點A,B.

)求橢圓M的方程;

)若,求 的最大值;

)設,直線PA與橢圓M的另一個交點為C,直線PB與橢圓M的另一個交點為D.C,D和點 共線,求k.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某企業(yè)常年生產一種出口產品,根據預測可知,進入21世紀以來,該產品的產量平穩(wěn)增長.記2009年為第1年,且前4年中,第x年與年產量f(x) 萬件之間的關系如下表所示:

x

1

2

3

4

f(x)

4.00

5.58

7.00

8.44

f(x)近似符合以下三種函數模型之一:f(x)=axbf(x)=2xa,f(x)=logxa.

(1)找出你認為最適合的函數模型,并說明理由,然后選取其中你認為最適合的數據求出相應的解析式;

(2)因遭受某國對該產品進行反傾銷的影響,2015年的年產量比預計減少30%,試根據所建立的函數模型,確定2015年的年產量.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知, 分別為雙曲線 的左、右焦點,過的直線與雙曲線的左右兩支分別交于, 兩點,若,則雙曲線的離心率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某班共名同學,在一次數學考試中全班同學成績全部介于分到分之間.將成績結果按如下方式分成五組:第一組,第二組 ,第五組.按上述分組方法得到的頻率分布直方圖如圖所示,將成績大于或等于分且小于分記為“良好”, 分以上記為“優(yōu)秀”,不超過分則記為“及格”.

(1)求該班學生在這次數學考試中成績“良好”的人數;

(2)若從第一、五組中共隨機取出兩個成績,記為取得第一組成績的個數,求的分布列與數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲、乙兩人在相同條件下各射靶10次,每次射靶的成績情況如圖所示:

(Ⅰ)請?zhí)顚懴卤恚▽懗鲇嬎氵^程):

(Ⅱ)從下列三個不同的角度對這次測試結果進行分析;

①從平均數和方差相結合看(分析誰的成績更穩(wěn)定);

②從平均數和命中9環(huán)及9環(huán)以上的次數相結合看(分析誰的成績好些);

③從折線圖上兩人射擊命中環(huán)數的走勢看(分析誰更有潛力)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設橢圓C ,定義橢圓C相關圓方程為,若拋物線的焦點與橢圓C的一個焦點重合,且橢圓C短軸的一個端點和其兩個焦點構成直角三角形。

I)求橢圓C的方程和相關圓”E的方程;

II)過相關圓”E上任意一點P相關圓”E的切線l與橢圓C交于AB兩點,O為坐標原點。

i)證明∠AOB為定值;

ii)連接PO并延長交相關圓”E于點Q,求ABQ面積的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,是一個半圓柱與多面體構成的幾何體,平面與半圓柱的下底面共面,且, 為弧上(不與重合)的動點.

(1)證明: 平面;

(2)若四邊形為正方形,且, ,求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2018河南濮陽市高三一模已知函數,

I)求函數的圖象在點處的切線方程

II)若存在,使得成立,求的取值范圍

查看答案和解析>>

同步練習冊答案