(本小題滿分14分)
在平面直角坐標(biāo)系中,已知圓和圓.
(1)若直線過點(diǎn),且被圓截得的弦長(zhǎng)為,求直線的方程;
(2)在平面內(nèi)是否存在一點(diǎn),使得過點(diǎn)有無窮多對(duì)互相垂直的直線,它們分別與圓和圓相交,且直線被圓截得的弦長(zhǎng)的倍與直線被圓截得的弦長(zhǎng)相等?若存在,求出所有滿足條件的點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
 
(1)若直線的斜率不存在,則過點(diǎn)的直線為,此時(shí)圓心到直線的距離為被圓截得的弦長(zhǎng)為,符合題意,所以直線為所求.                                            …………2分
若直線的斜率存在,可設(shè)直線的方程為,即,
所以圓心到直線的距離.       …………3分
又直線被圓截得的弦長(zhǎng)為,圓的半徑為4,所以圓心到直線的距離應(yīng)為,即有
,解得:.                             …………4分
因此,所求直線的方程為,
.                             …………5分
(2) 設(shè)點(diǎn)坐標(biāo)為,直線的斜率為(不妨設(shè),則的方程分別為:
,
.               …………6分
因?yàn)橹本被圓截得的弦長(zhǎng)的倍與直線被圓截得的弦長(zhǎng)相等,又已知圓的半徑是圓的半徑的倍.由垂徑定理得:圓心到直線的距離的倍與直線的距離相等.w   .m                            …………7分
故有,               …………10分
化簡(jiǎn)得:,
即有.
…………11分
由于關(guān)于的方程有無窮多解,所以有
,                        …………12分
解之得:
,                                    …………13分
所以所有滿足條件的點(diǎn)坐標(biāo)為.          …………14分
略       
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若圓,則的位置關(guān)系是(  )
A.外離B.相交C.內(nèi)切D.外切

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

圓過點(diǎn),圓心在上,并與直線相切,求該圓的方程。
(12分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分9分)如圖,已知⊙與⊙
切于點(diǎn),是兩圓的外公切線,,為切
點(diǎn), 的延長(zhǎng)線相交于點(diǎn),延長(zhǎng)
交⊙于 點(diǎn),點(diǎn)延長(zhǎng)線上.
(1)求證:是直角三角形;
(2)若,試判斷能否一定垂直?并說明理由.
(3)在(2)的條件下,若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(幾何證明選講選做題)已知PA是圓O的切線,切點(diǎn)為A,PA=2.AC是圓O的直徑,PC與圓O交于點(diǎn)BPB=1,則圓O的半徑為R=         。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知△ABC的三個(gè)頂點(diǎn)為A(-1,0),B(1,0),C在圓(x-2)2+(y-2)2=1上運(yùn)動(dòng),則△ABC面積的最小值為___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓C1x2+y2-4x-2y-5=0,圓C2x2+y2+2x-2y-14=0
(1)試判斷兩圓的位置關(guān)系;
(2)直線ι過點(diǎn)(6,3)與圓C1相交于A,B兩點(diǎn),且|AB|=2
6
,求直線ι的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知⊙及點(diǎn)A(1,3),BC為的任意一條直徑,則=( )
A.6   B.5  C.4D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

一動(dòng)圓與圓外切,同時(shí)與圓內(nèi)切,則動(dòng)圓圓心的軌跡方程是[
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案