【題目】已知某快遞公司收取快遞費(fèi)的標(biāo)準(zhǔn)是:重量不超過(guò)的包裹收費(fèi)元;重量超過(guò)的包裹,在收費(fèi)元的基礎(chǔ)上,每超過(guò)(不足,按計(jì)算)需再收元.該快遞公司承攬了一個(gè)工藝品廠家的全部玻璃工藝品包裹的郵寄事宜,該廠家隨機(jī)統(tǒng)計(jì)了件這種包裹的兩個(gè)統(tǒng)計(jì)數(shù)表如下:
表
包裹重量 | |||||
包裹數(shù) | |||||
損壞件數(shù) |
表
包裹重量 | |||||
出廠價(jià)(元件) | |||||
賣價(jià)(元件) |
估計(jì)該快遞公司對(duì)每件包裹收取快遞費(fèi)的平均值;
將包裹重量落入各組的頻率視為概率,該工藝品廠家承擔(dān)全部運(yùn)費(fèi),每個(gè)包裹只有一件產(chǎn)品,如果客戶收到有損壞品的包裹,該快遞公司每件按其出廠價(jià)的賠償給廠家.現(xiàn)該廠準(zhǔn)備給客戶郵寄重量在區(qū)間和內(nèi)的工藝品各件,求該廠家這兩件工藝品獲得利潤(rùn)的分布列和期望.
【答案】元;見(jiàn)解析,.
【解析】
由統(tǒng)計(jì)表估計(jì)該快遞公司對(duì)每件包裹收取的快遞費(fèi)的平均值;
重量在的產(chǎn)品數(shù)為,其損壞率為,重量在的產(chǎn)品數(shù)為,其損壞率為,設(shè)重量在的這件產(chǎn)品的利潤(rùn)記為,重量在的這件產(chǎn)品的利潤(rùn)記為,,,,,分別求出相應(yīng)的概率,由此能求出該廠家這兩件工藝品獲得利潤(rùn)的分布列和期望.
解:根據(jù)題意,設(shè)公司對(duì)每件包裹收取的快遞費(fèi)的平均值為,
(元).
重量在的產(chǎn)品數(shù)為,其損壞率為.
重量在的產(chǎn)品數(shù)為,其損壞率為,
設(shè)重量在的這件產(chǎn)品的利潤(rùn)記為,
則,,
設(shè)重量在的這件產(chǎn)品的利潤(rùn)記為,
則,,
所以,,,,
則,,
,
所以其分布列為:
利潤(rùn) | ||||
根據(jù)題意,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的右焦點(diǎn)為F,直線l與C交于M,N兩點(diǎn).
(1)若l過(guò)點(diǎn)F,點(diǎn)M,N到直線y=2的距離分別為d1,d2,且,求l的方程;
(2)若點(diǎn)M的坐標(biāo)為(0,1),直線m過(guò)點(diǎn)M交C于另一點(diǎn)N′,當(dāng)直線l與m的斜率之和為2時(shí),證明:直線NN′過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: 的兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)是直角三角形的三個(gè)頂點(diǎn),直線: 與橢圓有且只有一個(gè)公共點(diǎn).
(Ⅰ)求橢圓的方程及點(diǎn)的坐標(biāo);
(Ⅱ)設(shè)是坐標(biāo)原點(diǎn),直線平行于,與橢圓交于不同的兩點(diǎn)、,且與直線交于點(diǎn),證明:存在常數(shù),使得,并求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知下列命題:
①函數(shù)在上單調(diào)遞減,在上單調(diào)遞增;
②若函數(shù)在上有兩個(gè)零點(diǎn),則的取值范圍是;
③當(dāng)時(shí),函數(shù)的最大值為0;
④函數(shù)在上單調(diào)遞減;
上述命題正確的是_________(填序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在傳染病學(xué)中,通常把從致病刺激物侵入機(jī)體或者對(duì)機(jī)體發(fā)生作用起,到機(jī)體出現(xiàn)反應(yīng)或開(kāi)始呈現(xiàn)該疾病對(duì)應(yīng)的相關(guān)癥狀時(shí)止的這一階段稱為潛伏期.一研究團(tuán)隊(duì)統(tǒng)計(jì)了某地區(qū)1000名患者的相關(guān)信息,得到如下表格:
潛伏期(單位:天) | |||||||
人數(shù) | 85 | 205 | 310 | 250 | 130 | 15 | 5 |
(1)求這1000名患者的潛伏期的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)該傳染病的潛伏期受諸多因素的影響,為研究潛伏期與患者年齡的關(guān)系,以潛伏期是否超過(guò)6天為標(biāo)準(zhǔn)進(jìn)行分層抽樣,從上述1000名患者中抽取200人,得到如下列聯(lián)表.請(qǐng)將列聯(lián)表補(bǔ)充完整,并根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為潛伏期與患者年齡有關(guān);
潛伏期天 | 潛伏期天 | 總計(jì) | |
50歲以上(含50歲) | 100 | ||
50歲以下 | 55 | ||
總計(jì) | 200 |
(3)以這1000名患者的潛伏期超過(guò)6天的頻率,代替該地區(qū)1名患者潛伏期超過(guò)6天發(fā)生的概率,每名患者的潛伏期是否超過(guò)6天相互獨(dú)立.為了深入硏究,該硏究團(tuán)隊(duì)隨機(jī)調(diào)查了20名患者,設(shè)潛伏期超過(guò)6天的人數(shù)為,則的期望是多少?
附:
0.05 | 0.025 | 0.010 | |
3.841 | 5.024 | 6.635 |
,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知中,,,,,分別是,的中點(diǎn),將沿翻折,得到如圖所示的四棱錐,且,設(shè)為的中點(diǎn).
(1)證明:;
(2)求直線與平面所成角的的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)在區(qū)間上有兩個(gè)極值點(diǎn),,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年寒假期間新冠肺炎肆虐,全國(guó)人民眾志成城抗擊疫情.某市要求全體市民在家隔離,同時(shí)決定全市所有學(xué)校推遲開(kāi)學(xué).某區(qū)教育局為了讓學(xué)生“停課不停學(xué)”,要求學(xué)校各科老師每天在網(wǎng)上授課,每天共280分鐘,請(qǐng)學(xué)生自主學(xué)習(xí).區(qū)教育局為了了解高三學(xué)生網(wǎng)上學(xué)習(xí)情況,上課幾天后在全區(qū)高三學(xué)生中采取隨機(jī)抽樣的方法抽取了100名學(xué)生進(jìn)行問(wèn)卷調(diào)查,為了方便表述把學(xué)習(xí)時(shí)間在分鐘的學(xué)生稱為類,把學(xué)習(xí)時(shí)間在分鐘的學(xué)生稱為類,把學(xué)習(xí)時(shí)間在分鐘的學(xué)生稱為類,隨機(jī)調(diào)查的100名學(xué)生學(xué)習(xí)時(shí)間的人數(shù)頻率分布直方圖如圖所示:以頻率估計(jì)概率回答下列問(wèn)題:
(1)求100名學(xué)生中,,三類學(xué)生分別有多少人?
(2)在,,三類學(xué)生中,按分層抽樣的方法從上述100個(gè)學(xué)生中抽取10人,并在這10人中任意邀請(qǐng)3人電話訪談,求邀請(qǐng)的3人中是類的學(xué)生人數(shù)的分布列和數(shù)學(xué)期望;
(3)某校高三(1)班有50名學(xué)生,某天語(yǔ)文和數(shù)學(xué)老師計(jì)劃分別在19:00—19:40和20:00—20:40在線上與學(xué)生交流,由于受校園網(wǎng)絡(luò)平臺(tái)的限制,每次只能30個(gè)人同時(shí)在線學(xué)習(xí)交流.假設(shè)這兩個(gè)時(shí)間段高三(1)班都有30名學(xué)生相互獨(dú)立地隨機(jī)登錄參加學(xué)習(xí)交流.設(shè)表示參加語(yǔ)文或數(shù)學(xué)學(xué)習(xí)交流的人數(shù),當(dāng)為多少時(shí),其概率最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè) 為等差數(shù)列 的前 項(xiàng)和,其中 ,且 .
(1)求常數(shù) 的值,并寫(xiě)出 的通項(xiàng)公式;
(2)記 ,數(shù)列 的前 項(xiàng)和為 ,若對(duì)任意的 ,都有 ,求常數(shù) 的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com