【題目】設(shè)△ABC三個(gè)內(nèi)角A、B、C所對(duì)的邊分別為已知
(1)求角B的大;
(2)如圖,在△ABC內(nèi)取一點(diǎn)P,使得PB=2,過點(diǎn)P分別作直線BA、BC的垂線PM、PN,垂足分別是M、N,設(shè)∠PBA=求四邊形PMBN的面積的最大值及此時(shí)的值.
【答案】(1)B(2)α時(shí),四邊形PMBN的面積取得最大值.
【解析】
(1)由acosA=bcosB及正弦定理可得:sinAcosA=sinBcosB,即sin2A=sin2B,又A∈(0,π),B∈(0,π),可得A=B或A+B. 由于C,即可得出.
(2)由題設(shè),在Rt△PMB中,PM=2sinα;PN=2cosα,得其面積;在Rt△PNB中,同理可得PN=2sin(α),PM=2cos(α),α∈(0,)得其面積,進(jìn)而得四邊形面積,利用恒等變換結(jié)合三角函數(shù)最值即可得出.
(1)由acosA=bcosB及正弦定理可得:sinAcosA=sinBcosB,
即sin2A=sin2B,又A∈(0,π),B∈(0,π),
∴有A=B或A+B.
又∵C,得A+B,與A+B矛盾,
∴A=B,因此B.
(2)由題設(shè),得在Rt△PMB中,PM=PBsin∠PBM=2sinα;PN=PBcos∠PBM=2cosα,則
同理,在Rt△PNB中,PN=PBsin∠PBN=PBsin(∠PBA)=2sin(α),PM=2cos(α)α∈(0,),
∴四邊形PMBN的面積
∵α∈(0,),∴2α∈(,),
于是,當(dāng)2α,即α時(shí),四邊形PMBN的面積取得最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】世界那么大,我想去看看,處在具有時(shí)尚文化代表的大學(xué)生們旅游動(dòng)機(jī)強(qiáng)烈,旅游可支配收入日益增多,可見大學(xué)生旅游是一個(gè)巨大的市場.為了解大學(xué)生每年旅游消費(fèi)支出(單位:百元)的情況,相關(guān)部門隨機(jī)抽取了某大學(xué)的名學(xué)生進(jìn)行問卷調(diào)查,并把所得數(shù)據(jù)列成如下所示的頻數(shù)分布表:
組別 | |||||
頻數(shù) |
(Ⅰ)求所得樣本的中位數(shù)(精確到百元);
(Ⅱ)根據(jù)樣本數(shù)據(jù),可近似地認(rèn)為學(xué)生的旅游費(fèi)用支出服從正態(tài)分布,若該所大學(xué)共有學(xué)生人,試估計(jì)有多少位同學(xué)旅游費(fèi)用支出在元以上;
(Ⅲ)已知樣本數(shù)據(jù)中旅游費(fèi)用支出在范圍內(nèi)的名學(xué)生中有名女生, 名男生,現(xiàn)想選其中名學(xué)生回訪,記選出的男生人數(shù)為,求的分布列與數(shù)學(xué)期望.
附:若,則,
, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為圓上一動(dòng)點(diǎn),圓心關(guān)于軸的對(duì)稱點(diǎn)為,點(diǎn)分別是線段上的點(diǎn),且.
(1)求點(diǎn)的軌跡方程;
(2)直線與點(diǎn)的軌跡只有一個(gè)公共點(diǎn),且點(diǎn)在第二象限,過坐標(biāo)原點(diǎn)且與垂直的直線與圓相交于兩點(diǎn),求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的離心率是,過點(diǎn)的動(dòng)直線與橢圓相交于兩點(diǎn),當(dāng)直線與軸平行時(shí),直線被橢圓截得的線段長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)在軸上是否存在異于點(diǎn)的定點(diǎn),使得直線變化時(shí),總有?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列滿足,其中,且為常數(shù).
(1)若是等差數(shù)列,且公差,求的值;
(2)若,且數(shù)列滿足對(duì)任意的都成立.
①求數(shù)列的前項(xiàng)之和;
②若對(duì)任意的都成立,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)二次函數(shù)的圖像過點(diǎn)和,且對(duì)于任意實(shí)數(shù),不等式恒成立
(1)求的表達(dá)式;
(2)設(shè),若在上是增函數(shù),求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: ()的左焦點(diǎn)為,左準(zhǔn)線方程為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知直線交橢圓于, 兩點(diǎn).
①若直線經(jīng)過橢圓的左焦點(diǎn),交軸于點(diǎn),且滿足, .求證: 為定值;
②若(為原點(diǎn)),求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=Asin(ωx)+1(A>0,ω>0)的最大值為3,其圖象相鄰兩條對(duì)稱軸之間的距離為.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)y=f(x)的單調(diào)增區(qū)間;
(3)設(shè)α∈(0,),則f()=2,求α的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】水培植物需要一種植物專用營養(yǎng)液,已知每投放且個(gè)單位的營養(yǎng)液,它在水中釋放的濃度(克/升)隨著時(shí)間(天)變化的函數(shù)關(guān)系式近似為,其中,若多次投放,則某一時(shí)刻水中的營養(yǎng)液濃度為每次投放的營養(yǎng)液在相應(yīng)時(shí)刻所釋放的濃度之和,根據(jù)經(jīng)驗(yàn),當(dāng)水中營養(yǎng)液的濃度不低于4(克/升)時(shí),它才能有效.
(1)若只投放一次2個(gè)單位的營養(yǎng)液,則有效時(shí)間最多可能持續(xù)幾天?
(2)若先投放2個(gè)單位的營養(yǎng)液,4天后再投放b個(gè)單位的營養(yǎng)液,要使接下來的2天中,營養(yǎng)液能夠持續(xù)有效,試求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com