【題目】在數(shù)學中,布勞威爾不動點定理是拓撲學里一個非常重要的不動點定理,它可應用到有限維空間,并構成一般不動點定理的基石.布勞威爾不動點定理得名于荷蘭數(shù)學家魯伊茲·布勞威爾(L.E. J. Brouwer),簡單的講就是對于滿足一定條件的連續(xù)函數(shù),存在一個點,使得,那么我們稱該函數(shù)為不動點函數(shù),下列為不動點函數(shù)的是(

A.B.

C.D.

【答案】BCD

【解析】

根據(jù)已知定義,將問題轉化為方程有解,然后逐項進行求解并判斷即可.

根據(jù)定義可知:若有不動點,則有解.

A.令,所以,此時無解,故不是不動點函數(shù);

B.令,所以,所以不動點函數(shù);

C.當時,令,所以,所以不動點函數(shù);

D.令,所以,所以不動點函數(shù).

故選:BCD.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次不等式ax2+2x+b>0的解集為{x|x≠c},則(其中a+c≠0)的取值范圍為_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,右焦點F是拋物線的焦點,點在拋物線

求橢圓的方程;

已知斜率為k的直線l交橢圓A,B兩點,,直線AMBM的斜率乘積為,若在橢圓上存在點N,使,求的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近幾年一種新奇水果深受廣大消費者的喜愛,一位農(nóng)戶發(fā)揮聰明才智,把這種露天種植的新奇水果搬到了大棚里,收到了很好的經(jīng)濟效益.根據(jù)資料顯示,產(chǎn)出的新奇水果的箱數(shù)x(單位:十箱)與成本y(單位:千元)的關系如下:

x

1

3

4

6

7

y

5

65

7

75

8

yx可用回歸方程 其中為常數(shù))進行模擬.

(Ⅰ)若該農(nóng)戶產(chǎn)出的該新奇水果的價格為150/箱,試預測該新奇水果100箱的利潤是多少元.|

(Ⅱ)據(jù)統(tǒng)計,10月份的連續(xù)16天中該農(nóng)戶每天為甲地配送的該新奇水果的箱數(shù)的頻率分布直方圖如圖所示.

i)若從箱數(shù)在內的天數(shù)中隨機抽取2天,估計恰有1天的水果箱數(shù)在內的概率;

(ⅱ)求這16天該農(nóng)戶每天為甲地配送的該新奇水果的箱數(shù)的平均值.(每組用該組區(qū)間的中點值作代表)

參考數(shù)據(jù)與公式:設,則

0.54

6.8

1.53

0.45

線性回歸直線中,,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知曲線C的參數(shù)方程為α為參數(shù),直線ly=kxk0),以O為極點,x軸正半軸為極軸建立極坐標系.

(Ⅰ)求曲線C的極坐標方程;

(Ⅱ)若直線l與曲線C交于AB兩點,求|OA||OB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中,為自然對數(shù)的底數(shù).

(1)當時,證明:對;

(2)若函數(shù)上存在極值,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的單調區(qū)間和極值;

2)若,試討論函數(shù)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知方程只有一個實數(shù)根,則的取值范圍是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若輸入的m=1,則輸出數(shù)據(jù)的總個數(shù)為( 。

A. 5 B. 6 C. 7 D. 8

查看答案和解析>>

同步練習冊答案