精英家教網 > 高中數學 > 題目詳情

【題目】若數列{an}滿足a11a21,an+2an+an+1,則稱數列{an}為斐波那契數列,斐波那契螺旋線是根據斐波那契數列畫出來的螺旋曲線,自然界中存在許多斐波那契螺旋線的圖案,是自然界最完美的經典黃金比例.作圖規(guī)則是在以斐波那契數為邊的正方形拼成的長方形中畫一個圓心角為90°的扇形,連起來的弧線就是斐波那契螺旋線,如圖所示的7個正方形的邊長分別為a1,a2,a7,在長方形ABCD內任取一點,則該點不在任何一個扇形內的概率為(

A.1B.1C.D.

【答案】D

【解析】

由題意求得數列的前8項,求得長方形的面積,再求出6個扇形的面積和,由測度比是面積比得答案.

由題意可得,數列的前8項依次為:1,12,35,8,13,21

長方形的面積為

6個扇形的面積之和為

所求概率

故選:

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某大型企業(yè)生產的某批產品細分為個等級,為了了解這批產品的等級分布情況,從倉庫存放的件產品中隨機抽取件進行檢測、分類和統計,并依據以下規(guī)則對產品進行打分:級或級產品打分;級或級產品打分;級、級、級或級產品打分;其余產品打.現在有如下檢測統計表:

等級

1

2

3

4

5

6

7

8

9

10

頻數

10

90

100

200

200

100

100

100

70

30

規(guī)定:打分不低于分的為優(yōu)良級.

1)①試估計該企業(yè)庫存的件產品為優(yōu)良級的概率;

②請估計該企業(yè)庫存的件產品的平均得分.

2)從該企業(yè)庫存的件產品中隨機抽取件,請估計這件產品的打分之和為分的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】我國是世界上嚴重缺水的國家之一,城市缺水問題較為突出.某市為了節(jié)約生活用水,計劃在本市試行居民生活用水定額管理(即確定一個居民月均用水量標準:用水量不超過a的部分按照平價收費,超過a的部分按照議價收費).為了較為合理地確定出這個標準,通過抽樣獲得了100位居民某年的月均用水量(單位:噸),制作了頻率分布直方圖,

(Ⅰ)用該樣本估計總體:

1)估計該市居民月均用水量的平均數;

2)如果希望86%的居民每月的用水量不超出標準,則月均用水量a的最低標準定為多少噸?

(Ⅱ)若將頻率視為概率,現從該市某大型生活社區(qū)隨機調查3位居民的月均用水量,其中月均用水量不超過2.5噸的人數為X,求X的分布列和均值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)當時,求函數上的最大值;

(2)令,若在區(qū)間上為單調遞增函數,求的取值范圍;

(3)當 時,函數 的圖象與軸交于兩點 ,且 ,又的導函數.若正常數 滿足條件.證明:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某互聯網公司為了確定下一季度的前期廣告投入計劃,收集了近個月廣告投入量單位:萬元)和收益單位:萬元)的數據如下表

月份

廣告投入量

收益

他們分別用兩種模型①,分別進行擬合,得到相應的回歸方程并進行殘差分析,得到如圖所示的殘差圖及一些統計量的值

Ⅰ)根據殘差圖,比較模型①,②的擬合效果,應選擇哪個模型?并說明理由;

Ⅱ)殘差絕對值大于的數據被認為是異常數據,需要剔除

。┨蕹惓祿笄蟪觯á瘢┲兴x模型的回歸方程

ⅱ)若廣告投入量時,該模型收益的預報值是多少?

附:對于一組數據,,……,,其回歸直線的斜率和截距的最小二乘估計分別為

,.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2022年北京冬季奧運會即第24屆冬季奧林匹克運動會,將在202224220日在北京和張家口聯合舉行.某研究機構為了解大學生對冰壺運動的興趣,隨機從某大學學生中抽取了120人進行調查,經統計男生與女生的人數之比為1113,男生中有30人表示對冰壺運動有興趣,女生中有15人表示對冰壺運動沒有興趣.

1)完成2×2列聯表,并回答能否有99%的把握認為對冰壺是否有興趣與性別有關

有興趣

沒有興趣

合計

30

15

合計

120

2)若將頻率視為概率,現再從該校全體學生中,采用隨機抽樣的方法每次抽取1名學生,抽取5次,記被抽取的5名學生中對冰壺有興趣的人數為X,若每次抽取的結果是相互獨立的,求X的分布列,期望和方差.

附:參考公式,其中na+b+c+d.

臨界值表:

PK2K0

0.150

0.100

0.050

0.025

0.010

K0

2.072

2.076

3.841

5.024

6.635

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了研究“教學方式”對教學質量的影響,某高中老師分別用兩種不同的教學方式對入學數學平均分數和優(yōu)秀率都相同的甲、乙兩個高一新班進行教學(勤奮程度和自覺性都一樣).以下莖葉圖為甲、乙兩班(每班均為20人)學生的數學期末考試成績.

(1)現從甲班數學成績不低于80分的同學中隨機抽取兩名同學,求成績?yōu)?7分的同學至少有一名被抽中的概率;

(2)學校規(guī)定:成績不低于75分的為優(yōu)秀.請?zhí)顚懴旅娴?×2列聯表,并判斷有多大把握認為“成績優(yōu)秀與教學方式有關”.

甲班

乙班

合計

優(yōu)秀

不優(yōu)秀

合計

參考公式:,其中

參考數據:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】大學生趙敏利用寒假參加社會實踐,對機械銷售公司7月份至12月份銷售某種機械配件的銷售量及銷售單價進行了調查,銷售單價和銷售量之間的一組數據如下表所示:

月份

7

8

9

10

11

12

銷售單價(元)

9

9.5

10

10.5

11

8

銷售量(件)

11

10

8

6

5

14

(1)根據7至11月份的數據,求出關于的回歸直線方程;

(2)若由回歸直線方程得到的估計數據與剩下的檢驗數據的誤差不超過0.5元,則認為所得到的回歸直線方程是理想的,試問(1)中所得到的回歸直線方程是否理想?

(3)預計在今后的銷售中,銷售量與銷售單價仍然服從(1)中的關系,若該種機器配件的成本是2.5元/件,那么該配件的銷售單價應定為多少元才能獲得最大利潤?(注:利潤=銷售收入-成本).

 參考公式:回歸直線方程,其中,參考數據:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】微信運動是由騰訊開發(fā)的一個類似計步數據庫的公眾賬號,很多手機用戶加入微信運動后,為了讓自己的步數能領先于朋友,運動的積極性明顯增強.微信運動公眾號為了解用戶的一些情況,在微信運動用戶中隨機抽取了100名用戶,統計了他們某一天的步數,數據整理如下:

萬步

5

20

50

18

3

3

1

(Ⅰ)根據表中數據,在如圖所示的坐標平面中作出其頻率分布直方圖,并在縱軸上標明各小長方形的高;

(Ⅱ)若視頻率分布為概率分布,在微信運動用戶中隨機抽取3人,求至少2人步數多于1.2萬步的概率;

(Ⅲ)若視頻率分布為概率分布,在微信運動用戶中隨機抽取2人,其中每日走路不超過0.8萬步的有人,超過1.2萬步的有人,設,求的分布列及數學期望.

查看答案和解析>>

同步練習冊答案