【題目】下列四組函數(shù)中,表示相等函數(shù)的一組是( )
A.f(x)=1,g(x)=x0?
B.f(x)=|x|,g(t)=
C.f(x)= ,g(x)=x+1?
D.f(x)=lg(x+1)+lg(x﹣1),g(x)=lg(x2﹣1)
【答案】B
【解析】解:對于A,f(x)=1,與g(x)=x0=1(x≠0)的解析式相同,但定義域不同,不是相等函數(shù); 對于B,f(x)=|x|(x∈R),與g(t)= =|t|(t∈R)的解析式相同,定義域也相同,是相等函數(shù);
對于C,f(x)= =x+1(x≠1),與g(x)=x+1(x∈R)的解析式相同,但定義域不同,不是相等函數(shù);
對于D,f(x)=lg(x+1)+lg(x﹣1)=lg(x2﹣1)(x>1)與g(x)=lg(x2﹣1)(x<1或x>1)的解析式相同,
但定義域不同,不是相等函數(shù).
故選:B.
【考點精析】本題主要考查了判斷兩個函數(shù)是否為同一函數(shù)的相關知識點,需要掌握只有定義域和對應法則二者完全相同的函數(shù)才是同一函數(shù)才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】某同學在上學路上要經(jīng)過、、三個帶有紅綠燈的路口.已知他在、、三個路口遇到紅燈的概率依次是、、,遇到紅燈時停留的時間依次是秒、秒、秒,且在各路口是否遇到紅燈是相互獨立的.
(1)求這名同學在上學路上在第三個路口首次遇到紅燈的概率;,
(2)求這名同學在上學路上因遇到紅燈停留的總時間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=f(x)的定義域為{x|x∈R,且x≠2},且y=f(x+2)是偶函數(shù),當x<2時,f(x)=|2x﹣1|,那么當x>2時,函數(shù)f(x)的遞減區(qū)間是( )
A.(3,5)
B.(3,+∞)
C.(2,+∞)
D.(2,4]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù),關于的不等式的解集為,其中.
(1)求的值;
(2)令,若函數(shù)存在極值點,求實數(shù)的取值范圍,并求出極值點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C:(x﹣2)2+y2=9,直線l:x+y=0.
(1)求過圓C的圓心且與直線l垂直的直線n的方程;
(2)求與圓C相切,且與直線l平行的直線m的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題:①函數(shù)f(x)=sin2x一cos2x的最小正周期是;
②在等比數(shù)列〔}中,若,則a3=士2;
③設函數(shù)f(x)=,若有意義,則
④平面四邊形ABCD中, ,則四邊形ABCD是
菱形. 其中所有的真命題是:( )
A. ①②④ B. ①④ C. ③④ D. ①②③
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=|logax|(0<a<1)的定義域為[m,n](m<n),值域為[0,1],若n﹣m的最小值為 ,則實數(shù)a的值為( )
A.
B. 或
C.
D. 或
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com