【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)有兩個(gè)不同的零點(diǎn),求的取值范圍.
【答案】(1)分類討論,詳見解析;(2).
【解析】
(1)首先求導(dǎo)得到,再分別討論,,和時(shí)的單調(diào)性即可.
(2)根據(jù)(1)的單調(diào)性分別討論,,,和時(shí)的零點(diǎn)個(gè)數(shù)即可.
(1).
①當(dāng)時(shí),在區(qū)間單調(diào)遞增;在區(qū)間單調(diào)遞減.
②當(dāng)時(shí),令,,,且,
則在區(qū)間單調(diào)遞增;在區(qū)間和 單調(diào)遞減.
③當(dāng)時(shí),令,,
成立,則在R上單調(diào)遞減;
④當(dāng)時(shí),令,,,且,
則在區(qū)間單調(diào)遞增;在區(qū)間和單調(diào)遞減.
(2)當(dāng)時(shí),由(1)知,.
則在區(qū)間有且只有一零點(diǎn).
當(dāng)時(shí),,則,
故
則在區(qū)間有且只有一零點(diǎn).滿足題意;
當(dāng)時(shí),,易知有且只有一個(gè)零點(diǎn);
當(dāng)時(shí),若,
在區(qū)間單調(diào)遞減,故不存在兩個(gè)零點(diǎn);
當(dāng)時(shí), 在上單調(diào)遞減,不存在兩個(gè)零點(diǎn);
當(dāng)時(shí), 在區(qū)間單調(diào)遞減,在區(qū)間單調(diào)遞增,
,故不存在兩個(gè)零點(diǎn);
綜上所述:當(dāng)時(shí),有兩個(gè)不同的零點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠在2016年的“減員增效”中對(duì)部分人員實(shí)行分流,規(guī)定分流人員第一年可以到原單位領(lǐng)取工資的100%,從第二年起,以后每年只能在原單位按上一年的領(lǐng)取工資,該廠根據(jù)分流人員的技術(shù)特長(zhǎng),計(jì)劃創(chuàng)辦新的經(jīng)濟(jì)實(shí)體,該經(jīng)濟(jì)實(shí)體預(yù)計(jì)第一年屬投資階段,第二年每人可獲得元收入,從第三年起每人每年的收入可在上一年的基礎(chǔ)上遞增50%,如果某人分流后工資的收入每年元,分流后進(jìn)入新經(jīng)濟(jì)實(shí)體,第年的收入為元;
(1)求的通項(xiàng)公式;
(2)當(dāng)時(shí),是否一定可以保證這個(gè)人分流一年后的收入永遠(yuǎn)超過分流前的年收入?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知{an}是等差數(shù)列,其前n項(xiàng)和Sn=n2﹣2n+b﹣1,{bn}是等比數(shù)列,其前n項(xiàng)和Tn,則數(shù)列{ bn +an}的前5項(xiàng)和為( 。
A.37B.-27C.77D.46
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】廣東省2021年高考將實(shí)行“”模式,其最大特點(diǎn)就是取消文理科,除語文、數(shù)學(xué)、外語之外,從物理、歷史這2科中自由選擇一門科目;化學(xué)、生物、政治、地理這4科中自由選擇兩門科目作為選考科目.某研究機(jī)構(gòu)為了了解學(xué)生對(duì)全理(選擇物理、化學(xué)、生物)的選擇是否與性別有關(guān),從某學(xué)校高一年級(jí)的學(xué)生中隨機(jī)抽取男生、女生個(gè)25人進(jìn)行模擬選科.經(jīng)統(tǒng)計(jì),選擇全理的人數(shù)比不選全理的人數(shù)多10人.
(1)請(qǐng)完成下面的列聯(lián)表:
選擇全理 | 不選擇全理 | 合計(jì) | |
男生 | 5 | ||
女生 | |||
合計(jì) |
(2)估計(jì)有多大把握認(rèn)為選擇全理與性別有關(guān),并說明理由;
(3)現(xiàn)從這50名學(xué)生中已經(jīng)選取了男生3名,女生2名進(jìn)行座談,從這5人中抽取2名代表作問卷調(diào)查,求至少抽到一名女生的概率.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.076 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
附:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年北京市百項(xiàng)疏堵工程基本完成.有關(guān)部門為了解疏堵工程完成前后早高峰時(shí)段公交車運(yùn)行情況,調(diào)取某路公交車早高峰時(shí)段全程所用時(shí)間(單位:分鐘)的數(shù)據(jù),從疏堵工程完成前的數(shù)據(jù)中隨機(jī)抽取5個(gè)數(shù)據(jù),記為A組,從疏堵工程完成后的數(shù)據(jù)中隨機(jī)抽取5個(gè)數(shù)據(jù),記為B組.
A組:128,100,151,125,120
B組:100,102,96,101,
己知B組數(shù)據(jù)的中位數(shù)為100,且從中隨機(jī)抽取一個(gè)數(shù)不小于100的概率是.
(1)求a的值;
(2)該路公交車全程所用時(shí)間不超過100分鐘,稱為“正點(diǎn)運(yùn)行”從A,B兩組數(shù)據(jù)中各隨機(jī)抽取一個(gè)數(shù)據(jù),記兩次運(yùn)行中正點(diǎn)運(yùn)行的次數(shù)為X,求X的分布列及期望;
(3)試比較A,B兩組數(shù)據(jù)方差的大。ú灰笥(jì)算),并說明其實(shí)際意義.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),().
(Ⅰ)若函數(shù)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;
(Ⅱ)設(shè),若,若函數(shù)對(duì)恒成立,求實(shí)數(shù)的取值范圍.(是自然對(duì)數(shù)的底數(shù),)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓,點(diǎn),是圓上任意一點(diǎn),線段的垂直平分線和半徑相交于點(diǎn).
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)曲線與直線相交于,兩點(diǎn)(點(diǎn)在軸上方),且.點(diǎn),是曲線上位于直線兩側(cè)的兩個(gè)動(dòng)點(diǎn),且.求四邊形面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校開設(shè)了素描攝影剪紙書法四門選修課,要求每位同學(xué)都要選擇其中的兩門課程.已知甲同學(xué)選了素描,乙與甲沒有相同的課程,丙與甲恰有一門課程相同,丁與丙沒有相同課程.則以下說法錯(cuò)誤的是( )
A.丙有可能沒有選素描B.丁有可能沒有選素描
C.乙丁可能兩門課都相同D.這四個(gè)人里恰有2個(gè)人選素描
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】電視傳媒公司為了了解某地區(qū)電視觀眾對(duì)某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖;
將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為“體育迷”,已知“體育迷”中有10名女性.
非體育迷 | 體育迷 | 合計(jì) | |
男 | |||
女 | |||
合計(jì) |
(1)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否認(rèn)為“體育迷”與性別有關(guān)?
(2)將日均收看該體育項(xiàng)目不低于50分鐘的觀眾稱為“超級(jí)體育迷”,已知“超級(jí)體育迷”中有2名女性,若從“超級(jí)體育迷”中任意選取2人,求至少有1名女性觀眾的概率.
附:參考公式:.
0.05 | 0.01 | |
3.841 | 6.635 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com