【題目】某地區(qū)甲校高二年級有1 100人,乙校高二年級有900人,為了統(tǒng)計兩個學(xué)校高二年級在學(xué)業(yè)水平考試中的數(shù)學(xué)學(xué)科成績,采用分層抽樣的方法在兩校共抽取了200名學(xué)生的數(shù)學(xué)成績,如下表:(已知本次測試合格線是50分,兩校合格率均為100%)
甲校高二年級數(shù)學(xué)成績:
分組 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
頻數(shù) | 10 | 25 | 35 | 30 | x |
乙校高二年級數(shù)學(xué)成績:
分組 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
頻數(shù) | 15 | 30 | 25 | y | 5 |
(1)計算x,y的值,并分別估計以上兩所學(xué)校數(shù)學(xué)成績的平均分(精確到1分).
(2)若數(shù)學(xué)成績不低于80分為優(yōu)秀,低于80分的為非優(yōu)秀,根據(jù)以上統(tǒng)計數(shù)據(jù)寫下面2×2列聯(lián)表,并回答能否在犯錯誤的概率不超過0.05的前提下認為“兩個學(xué)校的數(shù)學(xué)成績有差異?”
甲校 | 乙校 | 總計 | |
優(yōu)秀 | |||
非優(yōu)秀 | |||
總計 |
【答案】見解析
【解析】
試題分析:(1)根據(jù)要抽取的人數(shù)和兩個學(xué)校的人數(shù)利用分層抽樣得到兩個學(xué)校要抽取的人數(shù),分別做出x,y的值,利用平均數(shù)的公式做出兩個學(xué)校的平均分.
(2)根據(jù)數(shù)學(xué)成績不低于80分為優(yōu)秀,低于80分為非優(yōu)秀,看出優(yōu)秀的人數(shù)和不優(yōu)秀的人數(shù),填出列聯(lián)表,根據(jù)列聯(lián)表的數(shù)據(jù),寫出觀測值的計算公式,得到觀測值,同臨界值進行比較,得到在犯錯誤的概率不超過0.05的前提下認為“兩個學(xué)校的數(shù)學(xué)成績有差異”.
試題解析:(1)依題意甲校應(yīng)抽取110人,乙校應(yīng)抽取90人,
故x=10,y=15,估計甲校平均分為≈75,
乙校平均分為≈71.
(2)列2×2列聯(lián)表如下:
甲校 | 乙校 | 總計 | |
優(yōu)秀 | 40 | 20 | 60 |
非優(yōu)秀 | 70 | 70 | 140 |
總計 | 110 | 90 | 200 |
k=≈4.714,
又因為4.714>3.841,故能在犯錯誤的概率不超過0.05的前提下認為“兩個學(xué)校的數(shù)學(xué)成績有差異”.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=alnx+ax2+bx,(a,b∈R).
(1)設(shè)a=1,f(x)在x=1處的切線過點(2,6),求b的值;
(2)設(shè)b=a2+2,求函數(shù)f(x)在區(qū)間[1,4]上的最大值;
(3)定義:一般的,設(shè)函數(shù)g(x)的定義域為D,若存在x0∈D,使g(x0)=x0成立,則稱x0為函數(shù)g(x)的不動點.設(shè)a>0,試問當函數(shù)f(x)有兩個不同的不動點時,這兩個不動點能否同時也是函數(shù)f(x)的極值點?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)為定義域上單調(diào)函數(shù),且存在區(qū)間(其中),使得當時,的取值范圍恰為,則稱函數(shù)是上的正函數(shù),區(qū)間叫做等域區(qū)間.
(1)已知是上的正函數(shù),求的等域區(qū)間;
(2)試探究是否存在實數(shù),使得函數(shù)是上的正函數(shù)?若存在,請求出實數(shù)的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列{an}中,a1=2,an+1=4an-3n+1,n∈N*.
(1)求證:數(shù)列{an-n}是等比數(shù)列;
(2)求數(shù)列{an}的前n項和Sn;
(3)求證:不等式Sn+1≤4Sn對任意n∈N*皆成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是平行四邊形, 平面,點, 分別為, 的中點,且, .
(1)證明: 平面;
(2)設(shè)直線與平面所成角為,當在內(nèi)變化時,求二面角的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)生對其親屬30人的飲食習(xí)慣進行了一次調(diào)查,并用下圖所示的莖葉圖表示30人的飲食指數(shù).(說明:圖中飲食指數(shù)低于70的人,飲食以蔬菜為主;飲食指數(shù)高于70的人,飲食以肉類為主)
(1)根據(jù)以上數(shù)據(jù)完成下面的2×2列聯(lián)表:
主食 蔬菜 | 主食 肉類 | 總計 | |
50歲以下 | |||
50歲以上 | |||
總計 |
(2)能否在犯錯誤的概率不超過0.010的前提下認為“其親屬的飲食習(xí)慣與年齡有關(guān)”?并寫出簡要分析.
附參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an},其前n項和為Sn .
(1)若{an}是公差為d(d>0)的等差數(shù)列,且{ }也為公差為d的等差數(shù)列,求數(shù)列{an}的通項公式;
(2)若數(shù)列{an}對任意m,n∈N* , 且m≠n,都有 =am+an+ ,求證:數(shù)列{an}是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an},其前n項和為Sn .
(1)若{an}是公差為d(d>0)的等差數(shù)列,且{ }也為公差為d的等差數(shù)列,求數(shù)列{an}的通項公式;
(2)若數(shù)列{an}對任意m,n∈N* , 且m≠n,都有 =am+an+ ,求證:數(shù)列{an}是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)兩個分類變量X與Y,它們的可能取值分別為{x1,x2}和{y1,y2},其列聯(lián)表為:
分類 | y1 | y2 | 總計 |
x1 | a | b | a+b |
x2 | c | d | c+d |
總計 | a+c | b+d | a+b+c+d |
對于同一樣本的以下各組數(shù)據(jù),能說明X與Y有關(guān)的可能性最大的一組為( )
A. a=5,b=4,c=3,d=2 B. a=5,b=3,c=4,d=2
C. a=2,b=3,c=4,d=5 D. a=2,b=3,c=5,d=4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com