【題目】已知數(shù)列{an},其前n項和為Sn .
(1)若{an}是公差為d(d>0)的等差數(shù)列,且{ }也為公差為d的等差數(shù)列,求數(shù)列{an}的通項公式;
(2)若數(shù)列{an}對任意m,n∈N* , 且m≠n,都有 =am+an+ ,求證:數(shù)列{an}是等差數(shù)列.
【答案】
(1)解:根據(jù)題意得:an=a1+(n﹣1)d,Sn=na1+ d,
∴ = 成等差數(shù)列,公差為d,
∴ =dn,
∴ ,
解得:d= ,a1=﹣ ,
則an= n﹣
(2)解:令m=2,n=1,則 =2a2,即 =a2,
整理得:a1+a3=2a2,即a1,a2,a3成等差數(shù)列,
下面用數(shù)學(xué)歸納法證明{an}成等差數(shù)列,
假設(shè)a1,a2,…,ak成等差數(shù)列,其中k≥3,公差為d,
則令m=k,n=1, =ak+a1+d,
∴2Sk+1=(k+1)(ak+a1+d)=k(ak+a1)+a1+ak+(k+1)d=2Sk+a1+ak+(k+1)d,
∴2ak+1=a1+ak+(k+1)d=2(a1+kd),即ak+1=a1+kd,
∴a1,a2,…,ak,ak+1成等差數(shù)列,
則對于一切自然數(shù),數(shù)列{an}是等差數(shù)列
【解析】(1)利用等差數(shù)列的通項公式及前n項和公式表示出an與Sn , 代入驗證即可確定出數(shù)列{an}的通項公式;(2)令m=2,n=1確定出a1 , a2 , a3成等差數(shù)列,再利用數(shù)學(xué)歸納法證明對于一切n≥3的自然數(shù),數(shù)列{an}是等差數(shù)列即可.
【考點精析】認真審題,首先需要了解等差關(guān)系的確定(如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),即-=d ,(n≥2,n∈N)那么這個數(shù)列就叫做等差數(shù)列),還要掌握等差數(shù)列的性質(zhì)(在等差數(shù)列{an}中,從第2項起,每一項是它相鄰二項的等差中項;相隔等距離的項組成的數(shù)列是等差數(shù)列)的相關(guān)知識才是答題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知拋物線y2=2px(p>0)上一點P( ,m)到準(zhǔn)線的距離與到原點O的距離相等,拋物線的焦點為F.
(1)求拋物線的方程;
(2)若A為拋物線上一點(異于原點O),點A處的切線交x軸于點B,過A作準(zhǔn)線的垂線,垂足為點E.試判斷四邊形AEBF的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)甲校高二年級有1 100人,乙校高二年級有900人,為了統(tǒng)計兩個學(xué)校高二年級在學(xué)業(yè)水平考試中的數(shù)學(xué)學(xué)科成績,采用分層抽樣的方法在兩校共抽取了200名學(xué)生的數(shù)學(xué)成績,如下表:(已知本次測試合格線是50分,兩校合格率均為100%)
甲校高二年級數(shù)學(xué)成績:
分組 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
頻數(shù) | 10 | 25 | 35 | 30 | x |
乙校高二年級數(shù)學(xué)成績:
分組 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
頻數(shù) | 15 | 30 | 25 | y | 5 |
(1)計算x,y的值,并分別估計以上兩所學(xué)校數(shù)學(xué)成績的平均分(精確到1分).
(2)若數(shù)學(xué)成績不低于80分為優(yōu)秀,低于80分的為非優(yōu)秀,根據(jù)以上統(tǒng)計數(shù)據(jù)寫下面2×2列聯(lián)表,并回答能否在犯錯誤的概率不超過0.05的前提下認為“兩個學(xué)校的數(shù)學(xué)成績有差異?”
甲校 | 乙校 | 總計 | |
優(yōu)秀 | |||
非優(yōu)秀 | |||
總計 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,已知AB⊥AC,AB=2,AC=4,AA1=3.D是線段BC的中點.
(1)求直線DB1與平面A1C1D所成角的正弦值;
(2)求二面角B1﹣A1D﹣C1的大小的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐P﹣ABC中,D為AB的中點.
(1)與BC平行的平面PDE交AC于點E,判斷點E在AC上的位置并說明理由如下:
(2)若PA=PB,且△PCD為銳角三角形,又平面PCD⊥平面ABC,求證:AB⊥PC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ln x,g(x)= (a>0),設(shè)F(x)=f(x)+g(x).
(1)求函數(shù)F(x)的單調(diào)區(qū)間;
(2)若函數(shù)y=F(x)(x∈(0,3])圖像上任意一點P(x0,y0)處的切線的斜率k≤恒成立,求實數(shù)a的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)已知函數(shù)f(x)=x2-2(a+1)x+2alnx(a>0).
(1)當(dāng)a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)求f(x)的單調(diào)區(qū)間;
(3)若f(x)≤0在區(qū)間[1,e]上恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com