精英家教網 > 高中數學 > 題目詳情

【題目】若函數y=f(x)同時滿足:(。⿲τ诙x域內的任意x,恒有f(x)+f(﹣x)=0;(ⅱ)對于定義域內的任意x1 , x2 , 當x1≠x2時,恒有 , 則稱函數f(x)為“二維函數”.現給出下列四個函數:
①f(x)=
②f(x)=﹣x3+x


其中能被稱為“二維函數”的有 (寫出所有滿足條件的函數的序號).

【答案】④
【解析】解:由(i)可知f(x)是奇函數,由(ii)可知f(x)定義域上的減函數.
對于①,f(x)=在定義域上不單調,不符合條件(ii),
對于②,f(x)=﹣x3+x在R上不單調,不符合條件(ii),
對于③,不是奇函數,不符合條件(i),
對于④,作出f(x)的函數圖象,由圖象可知是奇函數,且在R上是減函數.
所以答案是④.

【考點精析】通過靈活運用函數單調性的判斷方法,掌握單調性的判定法:①設x1,x2是所研究區(qū)間內任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較即可以解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】近年來隨著我國在教育科研上的投入不斷加大,科學技術得到迅猛發(fā)展,國內企業(yè)的國際競爭力得到大幅提升.伴隨著國內市場增速放緩,國內有實力企業(yè)紛紛進行海外布局,第二輪企業(yè)出海潮到來.如在智能手機行業(yè),國產品牌已在趕超國外巨頭,某品牌手機公司一直默默拓展海外市場,在海外共設多個分支機構,需要國內公司外派大量后、后中青年員工.該企業(yè)為了解這兩個年齡層員工是否愿意被外派工作的態(tài)度,按分層抽樣的方式從后和后的員工中隨機調查了位,得到數據如下表:

愿意被外派

不愿意被外派

合計

合計

(Ⅰ)根據調查的數據,是否有以上的把握認為“是否愿意被外派與年齡有關”,并說明理由;

(Ⅱ)該公司舉行參觀駐海外分支機構的交流體驗活動,擬安排名參與調查的后、后員工參加.后員工中有愿意被外派的人和不愿意被外派的人報名參加,從中隨機選出人,記選到愿意被外派的人數為;后員工中有愿意被外派的人和不愿意被外派的人報名參加,從中隨機選出人,記選到愿意被外派的人數為,求的概率

參考數據:

(參考公式:,其中).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=bax , (其中a,b為常數且a>0,a≠1)的圖象經過點A(1,8),B(3,32)
(1)求f(x)的解析式;
(2)若不等式+1﹣2m≥0在x∈(﹣∞,1]上恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,AB為⊙O的直徑,直線CD與⊙O相切于E,AD垂直CDD,BC垂直CDCEF垂直ABF,連接AE,BE.

證明:(1)∠FEB=∠CEB

(2)EF2AD·BC.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,⊙O與⊙O′相交于A、B兩點,過A引直線CD,EF分別交兩圓于點C、DE、F,ECDF的延長線相交于點P,求證:∠P+∠CBD=180°.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知全集I=R,集合A={x∈R|},集合B是不等式2|x+1|<4的解集,求A∩(CIB).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】數列的前項和,且的等差中項,等差數列滿足.

(1)求數列、的通項公式;

(2)設,數列的前項和為,證明:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐的底面是正方形,側棱⊥底面的中點.

(Ⅰ)求證: ;

(Ⅱ)證明:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,三棱柱中,側棱平面 為等腰直角三角形, , 分別是, 的中點,且

(Ⅰ)求證: 平面;

(Ⅱ)若,求點到平面的距離 .

查看答案和解析>>

同步練習冊答案