【題目】如圖,三棱柱中,側(cè)棱平面, 為等腰直角三角形, , , 分別是, 的中點(diǎn),且.
(Ⅰ)求證: 平面;
(Ⅱ)若,求點(diǎn)到平面的距離 .
【答案】(Ⅰ)見解析; (Ⅱ).
【解析】試題分析:
(Ⅰ)要證線面垂直,一般先證線線垂直,一個(gè)在中,利用勾股定理證得,然后由于三棱柱的側(cè)棱與底面垂直,從而側(cè)面與底面垂直,而底面是等腰直角三角形, 與垂直,從而與側(cè)面垂直,于是有,由線面垂直的判定定理可得;
(Ⅱ)要求點(diǎn)到平面的距離,在四面體中的面積易求,可把此四面體看作以為頂點(diǎn),以為底面的三棱錐,這時(shí)棱錐的高與底面積易求,從而由體積法可求得題設(shè)距離.
試題解析:
(Ⅰ)證明:連接.
∵是等腰直角三角形斜邊的中點(diǎn),所以,
∵平面, , 平面, ,
又∵,
∴平面,
∵平面,∴.
設(shè),則, , ,
∴,∴.
又,∴平面.
(Ⅱ)解:取中點(diǎn),連接,則,∴, 平面,
平面, ,
又∵,∴平面,
, ,
, ,解得.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)y=f(x)同時(shí)滿足:(。⿲τ诙x域內(nèi)的任意x,恒有f(x)+f(﹣x)=0;(ⅱ)對于定義域內(nèi)的任意x1 , x2 , 當(dāng)x1≠x2時(shí),恒有 , 則稱函數(shù)f(x)為“二維函數(shù)”.現(xiàn)給出下列四個(gè)函數(shù):
①f(x)=
②f(x)=﹣x3+x
③
④
其中能被稱為“二維函數(shù)”的有 (寫出所有滿足條件的函數(shù)的序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正三棱柱ABC﹣A1B1C1中,點(diǎn)D是棱BC的中點(diǎn).
求證:(1)AD⊥C1D;
(2)A1B∥平面ADC1 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在直四棱柱ABCD﹣A1B1C1D1中,DB=BC,DB⊥AC,點(diǎn)M是棱BB1上一點(diǎn).
(1)求證:B1D1∥面A1BD;
(2)求證:MD⊥AC;
(3)試確定點(diǎn)M的位置,使得平面DMC1⊥平面CC1D1D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓: 和點(diǎn),動(dòng)圓經(jīng)過點(diǎn)且與圓相切,圓心的軌跡為曲線.
(1)求曲線的方程;
(2)點(diǎn)是曲線與軸正半軸的交點(diǎn),點(diǎn), 在曲線上,若直線, 的斜率分別是, ,滿足,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=的定義域?yàn)锳,集合B={x|(x﹣m﹣3)(x﹣m+3)≤0}.
(1)求A和f(x)的值域C;
(2)若A∩B=[2,3],求實(shí)數(shù)m的值;
(3)若CRB,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司制定了一個(gè)激勵(lì)銷售人員的獎(jiǎng)勵(lì)方案:當(dāng)銷售利潤不超過20萬元時(shí),按銷售利潤的20%進(jìn)行獎(jiǎng)勵(lì);當(dāng)銷售利潤超過20萬元時(shí),若超出部分為A萬元,則超出部分按2log5(A+2)進(jìn)行獎(jiǎng)勵(lì),沒超出部分仍按銷售利潤的20%進(jìn)行獎(jiǎng)勵(lì).記獎(jiǎng)金總額為y(單位:萬元),銷售利潤為x(單位:萬元).
(1)寫出該公司激勵(lì)銷售人員獎(jiǎng)勵(lì)方案的函數(shù)表達(dá)式;
(2)如果業(yè)務(wù)員老張獲得8萬元的獎(jiǎng)勵(lì),那么他的銷售利潤是多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】共享單車的出現(xiàn)方便了人們的出行,深受市民的喜愛.為調(diào)查某校大學(xué)生對共享單車的使用情況,從該校8000名學(xué)生隨機(jī)抽取了100位同學(xué)進(jìn)行調(diào)查,得到這100名同學(xué)每周使用共享單車的時(shí)間(單位:小時(shí))頻率分布直方圖.
(1)已知該校大一學(xué)生有2400人,求抽取的100名學(xué)生中大一學(xué)生人數(shù);
(2)根據(jù)頻率分布直方圖求該校大學(xué)生每周使用共享單車的平均時(shí)間.
(3)從抽取的100個(gè)樣本中,用分層抽樣的方法抽取使用共享單車時(shí)間超過6小時(shí)同學(xué)5人,再從這5人中任選2人,求這2人使用共享單車時(shí)間都不超過8小時(shí)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com