【題目】已知F為拋物線C:y2=4x的焦點,過F作兩條互相垂直的直線l1 , l2 , 直線l1與C交于A、B兩點,直線l2與C交于D、E兩點,則|AB|+|DE|的最小值為( 。
A.16
B.14
C.12
D.10

【答案】A
【解析】解:如圖,l1⊥l2 , 直線l1與C交于A、B兩點,
直線l2與C交于D、E兩點,
要使|AB|+|DE|最小,
則A與D,B,E關(guān)于x軸對稱,即直線DE的斜率為1,
又直線l2過點(1,0),
則直線l2的方程為y=x﹣1,
聯(lián)立方程組 ,則y2﹣4y﹣4=0,
∴y1+y2=4,y1y2=﹣4,
∴|DE|= |y1﹣y2|= × =8,
∴|AB|+|DE|的最小值為2|DE|=16,
故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正整數(shù)數(shù)列滿足,對于給定的正整數(shù),若數(shù)列中首個值為1的項為,我們定義,則_____.設(shè)集合,則集合中所有元素的和為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校200名學(xué)生的數(shù)學(xué)期中考試成績頻率分布直方圖如圖所示,其中成績分組區(qū)間是.

1)求圖中m的值;

2)根據(jù)頻率分布直方圖,估計這200名學(xué)生的平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中間值作代表)和中位數(shù)(四舍五入取整數(shù));

3)若這200名學(xué)生的數(shù)學(xué)成績中,某些分?jǐn)?shù)段的人數(shù)x與英語成績相應(yīng)分?jǐn)?shù)段的人數(shù)y之比如下表所示,求英語成績在的人數(shù).

分?jǐn)?shù)段

[70,80

[8090

[90,100

[100110

[110,120

xy

1:2

2:1

6:5

1:2

1:1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)φ(x)= ,a>0
(1)若函數(shù)f(x)=lnx+φ(x),在(1,2)上只有一個極值點,求a的取值范圍;
(2)若g(x)=|lnx|+φ(x),且對任意x1 , x2∈(0,2],且x1≠x2 , 都有 <﹣1,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦距為,且過點.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)為橢圓上一點,過點軸的垂線,垂足為.取點,連接,過點的垂線交軸于點.點是點關(guān)于軸的對稱點,作直線,問這樣作出的直線是否與橢圓一定有唯一的公共點?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓 + =1(a>b>0)的左焦點為F,右頂點為A,離心率為 .已知A是拋物線y2=2px(p>0)的焦點,F(xiàn)到拋物線的準(zhǔn)線l的距離為
(Ⅰ)求橢圓的方程和拋物線的方程;
(Ⅱ)設(shè)l上兩點P,Q關(guān)于x軸對稱,直線AP與橢圓相交于點B(B異于A),直線BQ與x軸相交于點D.若△APD的面積為 ,求直線AP的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】微信是現(xiàn)代生活進(jìn)行信息交流的重要工具,據(jù)統(tǒng)計,某公司名員工中的人使用微信,其中每天使用微信時間在一小時以內(nèi)的有,其余的員工每天使用微信的時間在一小時以上,若將員工分成青年(年齡小于歲)和中年(年齡不小于歲)兩個階段,那么使用微信的人中是青年人.若規(guī)定:每天使用微信時間在一小時以上為經(jīng)常使用微信,那么經(jīng)常使用微信的員工中是青年人.

(1)若要調(diào)查該公司使用微信的員工經(jīng)常使用微信與年齡的關(guān)系,列出列聯(lián)表

青年人

中年人

總計

經(jīng)常使用微信

不經(jīng)常使用微信

總計

(2)由列聯(lián)表中所得數(shù)據(jù)判斷,是否有百分之的把握認(rèn)為“經(jīng)常使用微信與年齡有關(guān)”?

0.010

0.001

6.635

10.828

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,是半圓的直徑,垂直于半圓所在的平面,點是圓周上不同于的任意一點,分別為的中點,則下列結(jié)論正確的是(  )

A.B.平面平面

C.所成的角為45°D.平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 、 滿足| |=1,| |=2,則| + |+| |的最小值是 , 最大值是

查看答案和解析>>

同步練習(xí)冊答案