【題目】設(shè)橢圓 + =1(a>b>0)的左焦點為F,右頂點為A,離心率為 .已知A是拋物線y2=2px(p>0)的焦點,F(xiàn)到拋物線的準線l的距離為 .
(Ⅰ)求橢圓的方程和拋物線的方程;
(Ⅱ)設(shè)l上兩點P,Q關(guān)于x軸對稱,直線AP與橢圓相交于點B(B異于A),直線BQ與x軸相交于點D.若△APD的面積為 ,求直線AP的方程.
【答案】(Ⅰ)解:設(shè)F的坐標為(﹣c,0).
依題意可得 ,
解得a=1,c= ,p=2,于是b2=a2﹣c2= .
所以,橢圓的方程為x2+ =1,拋物線的方程為y2=4x.
(Ⅱ)解:直線l的方程為x=﹣1,設(shè)直線AP的方程為x=my+1(m≠0),
聯(lián)立方程組 ,解得點P(﹣1,﹣ ),故Q(﹣1, ).
聯(lián)立方程組 ,消去x,整理得(3m2+4)y2+6my=0,解得y=0,或y=﹣ .
∴B( , ).
∴直線BQ的方程為( ﹣ )(x+1)﹣( )(y﹣ )=0,
令y=0,解得x= ,故D( ,0).
∴|AD|=1﹣ = .
又∵△APD的面積為 ,∴ × = ,
整理得3m2﹣2 |m|+2=0,解得|m|= ,∴m=± .
∴直線AP的方程為3x+ y﹣3=0,或3x﹣ y﹣3=0.
【解析】(Ⅰ)根據(jù)橢圓和拋物線的定義、性質(zhì)列方程組求出a,b,p即可得出方程;(Ⅱ)設(shè)AP方程為x=my+1,聯(lián)立方程組得出B,P,Q三點坐標,從而得出直線BQ的方程,解出D點坐標,根據(jù)三角形的面積列方程解出m即可得出答案.
【考點精析】根據(jù)題目的已知條件,利用橢圓的標準方程的相關(guān)知識可以得到問題的答案,需要掌握橢圓標準方程焦點在x軸:,焦點在y軸:.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),
(1)寫出函數(shù)的解析式;
(2)若直線與曲線有三個不同的交點,求的取值范圍;
(3)若直線 與曲線在內(nèi)有交點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)是兩條不同的直線,是三個不同的平面,給出下列四個命題:①若,則 ; ②若則;③若,則; ④若,則,其中正確命題的序號是( )
A.①和②B.②和③C.③和④D.①和④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了實現(xiàn)綠色發(fā)展,避免浪費能源,某市政府計劃對居民用電采用階梯收費的方法.為此,相關(guān)部分在該市隨機調(diào)查了戶居民六月份的用電量(單位:)和家庭收入(單位:萬元),以了解這個城市家庭用電量的情況.
用電量數(shù)據(jù)如下:
.
對應(yīng)的家庭收入數(shù)據(jù)如下:
.
(Ⅰ)根據(jù)國家發(fā)改委的指示精神,該市計劃實施階階梯電價,使的用戶在第一檔,電價為元/;的用戶在第二檔,電價為元/;的用戶在第三檔,電價為元/,試求出居民用電費用與用電量間的函數(shù)關(guān)系;
(Ⅱ)以家庭收入為橫坐標,電量為縱坐標作出散點圖(如圖),求關(guān)于的回歸直線方程(回歸直線方程的系數(shù)四舍五入保留整數(shù)).
(Ⅲ)小明家的月收入元,按上述關(guān)系,估計小明家月支出電費多少元?
參考數(shù)據(jù):,,,,.
參考公式:一組相關(guān)數(shù)據(jù),,…,的回歸直線方程的斜率和截距的最小二乘法估計分別為,,其中,為樣本均值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知F為拋物線C:y2=4x的焦點,過F作兩條互相垂直的直線l1 , l2 , 直線l1與C交于A、B兩點,直線l2與C交于D、E兩點,則|AB|+|DE|的最小值為( 。
A.16
B.14
C.12
D.10
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法中:
①若,滿足,則的最大值為;
②若,則函數(shù)的最小值為
③若,滿足,則的最小值為
④函數(shù)的最小值為
正確的有__________.(把你認為正確的序號全部寫上)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著業(yè)的迅速發(fā)展計算機也在迅速更新?lián)Q代,平板電腦因使用和移動便捷以及時尚新潮性,而備受人們尤其是大學生的青睞,為了解大學生購買平板電腦進行學習的學習情況,某大學內(nèi)進行了一次匿名調(diào)查,共收到1500份有效問卷.調(diào)查結(jié)果顯示700名女學生中有300人,800名男生中有400人擁有平板電腦.
(Ⅰ)完成下列列聯(lián)表:
(Ⅱ)分析是否有的把握認為購買平板電腦與性別有關(guān)?
附:獨立性檢驗臨界值表:
(參考公式:,其中)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱臺形玻璃容器Ⅱ的高均為32cm,容器Ⅰ的底面對角線AC的長為10 cm,容器Ⅱ的兩底面對角線EG,E1G1的長分別為14cm和62cm.分別在容器Ⅰ和容器Ⅱ中注入水,水深均為12cm.現(xiàn)有一根玻璃棒l,其長度為40cm.(容器厚度、玻璃棒粗細均忽略不計)
(Ⅰ)將l放在容器Ⅰ中,l的一端置于點A處,另一端置于側(cè)棱CC1上,求l沒入水中部分的長度;
(Ⅱ)將l放在容器Ⅱ中,l的一端置于點E處,另一端置于側(cè)棱GG1上,求l沒入水中部分的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com