【題目】已知橢圓的離心率為,且橢圓上一點(diǎn)與橢圓左右兩個(gè)焦點(diǎn)構(gòu)成的三角形周長(zhǎng)為.

(1)求橢圓的方程;

(2)如圖,設(shè)點(diǎn)為橢圓上任意一點(diǎn),直線和橢圓交于兩點(diǎn),且直線軸分別交于兩點(diǎn),求證: .

【答案】(1) ;(2)詳見(jiàn)解析.

【解析】試題分析:(1),,聯(lián)立求出 、 、的值,即可得出橢圓的方程;(2)設(shè),則,求出直線的方程與直線方程,可得的坐標(biāo),利用斜率公式只要證明即可得出結(jié)果.

試題解析:∵,∴

∴橢圓方程為

(2)

設(shè),則

直線方程為

,則

同理

均為銳角,

互余,

方法點(diǎn)晴】本題主要考查待定系數(shù)求橢圓方程以及直線與橢圓的位置關(guān)系,屬于難題.用待定系數(shù)法求橢圓方程的一般步驟;作判斷:根據(jù)條件判斷橢圓的焦點(diǎn)在軸上,還是在軸上,還是兩個(gè)坐標(biāo)軸都有可能;設(shè)方程:根據(jù)上述判斷設(shè)方程 ;找關(guān)系:根據(jù)已知條件,建立關(guān)于、的方程組;得方程:解方程組,將解代入所設(shè)方程,即為所求.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果函數(shù)f(x)=3sin(2x+φ)的圖象關(guān)于點(diǎn)( ,0)成中心對(duì)稱(|φ|< ),那么函數(shù)f(x)圖象的一條對(duì)稱軸是(
A.x=﹣
B.x=
C.x=
D.x=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一艘輪船在航行中的燃料費(fèi)和它的速度的立方成正比,已知在速度為每小時(shí)10公里時(shí)的燃料費(fèi)是每小時(shí)6元,而其他與速度無(wú)關(guān)的費(fèi)用是每小時(shí)96元,問(wèn)此輪船以何種速度航行時(shí),能使行駛每公里的費(fèi)用總和最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)A,B,C,D為平面內(nèi)的四點(diǎn),且A(1,3),B(2,﹣2),C(4,1).
(1)若 = ,求D點(diǎn)的坐標(biāo);
(2)設(shè)向量 = = ,若k +3 平行,求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】漳州市“網(wǎng)約車”的現(xiàn)行計(jì)價(jià)標(biāo)準(zhǔn)是:路程在2km以內(nèi)(含2km)按起步價(jià)8元收取,超過(guò)2km后的路程按1.9元/km收取,但超過(guò)10km后的路程需加收50%的返空費(fèi)(即單價(jià)為1.9×(1+50%)=2.85元).
(1)將某乘客搭乘一次“網(wǎng)約車”的費(fèi)用f(x)(單位:元)表示為行程x(0<x≤60,單位:km)的分段函數(shù);
(2)某乘客的行程為16km,他準(zhǔn)備先乘一輛“網(wǎng)約車”行駛8km后,再換乘另一輛“網(wǎng)約車”完成余下行程,請(qǐng)問(wèn):他這樣做是否比只乘一輛“網(wǎng)約車”完成全部行程更省錢?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,過(guò)點(diǎn)的直線的傾斜角為45°,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線和曲線的交點(diǎn)為點(diǎn).

(1)求直線的參數(shù)方程;

(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=﹣ x3+x2+(m2﹣1)x,(x∈R),其中m>0.
(1)當(dāng)m=1時(shí),曲線y=f(x)在點(diǎn)(1,f(1))處的切線斜率;
(2)求函數(shù)的單調(diào)區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合題。
(1)求函數(shù)f(x)=sin2x+cosx+1,x∈[﹣ ]的值域.
(2)求函數(shù) 的定義域和單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》有如下問(wèn)題:“今有蒲(水生植物名)生一日,長(zhǎng)三尺;莞(植物名,俗稱水蔥、席子草)生一日,長(zhǎng)一尺.蒲生日自半,莞生日自倍.問(wèn)幾何日而長(zhǎng)等?”意思是:今有蒲生長(zhǎng)1日,長(zhǎng)為3尺;莞生長(zhǎng)1日,長(zhǎng)為1尺.蒲的生長(zhǎng)逐日減半,莞的生長(zhǎng)逐日增加1倍.若蒲、莞長(zhǎng)度相等,則所需的時(shí)間約為( )(結(jié)果保留一位小數(shù).參考數(shù)據(jù):,)( )

A. 1.3日 B. 1.5日 C. 2.6日 D. 2.8日

查看答案和解析>>

同步練習(xí)冊(cè)答案