【題目】如圖,在多面體中,梯形與平行四邊形所在平面互相垂直, ,,,,.
(Ⅰ)求證:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)判斷線段上是否存在點(diǎn),使得平面平面?若存在,求 出的值,若不存在,說(shuō)明理由.
【答案】(Ⅰ)見解析;(Ⅱ);(Ⅲ)
【解析】
(Ⅰ)根據(jù)線線平行得線面平行平面,平面,再根據(jù)線面平行得面面平行平面平面,最后由面面平行性質(zhì)得結(jié)論,(Ⅱ)先根據(jù)面面垂直得線面垂直平面,再得線線垂直,類似可得進(jìn)而建立空間直角坐標(biāo)系,設(shè)立各點(diǎn)坐標(biāo),利用方程組解得平面法向量,利用向量數(shù)量積得兩法向量夾角,最后根據(jù)二面角與法向量夾角關(guān)系得結(jié)果,(Ⅲ)先設(shè),再利用方程組解得平面法向量,最后根據(jù)兩法向量數(shù)量積為零解得結(jié)果.
(Ⅰ)由底面為平行四邊形,知,
又因?yàn)?/span>平面,平面, 所以平面.
同理平面,又因?yàn)?/span>,所以平面平面.
又因?yàn)?/span>平面,所以平面
(Ⅱ)連接,因?yàn)槠矫?/span>平面,平面平面,,
所以平面. 則.
又因?yàn)?/span>,,, 所以平面,則.
故兩兩垂直,所以以所在的直線分別為軸、軸和軸,如圖建立空間直角坐標(biāo)系,則,,,,,, 所以,,為平面的一個(gè)法向量.
設(shè)平面的一個(gè)法向量為,
由,,得 令,得.
所以.
如圖可得二面角為銳角, 所以二面角的余弦值為.
(Ⅲ)結(jié)論:線段上存在點(diǎn),使得平面平面.
證明如下:設(shè),所以. 設(shè)平面的法向量為,又因?yàn)?/span>,所以,,即 令,得.
若平面平面,則,即, 解得.
所以線段上存在點(diǎn),使得平面平面,且此時(shí).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,曲線:(,為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線:.
(1)說(shuō)明是哪一種曲線,并將的方程化為極坐標(biāo)方程;
(2)若直線的方程為,設(shè)與的交點(diǎn)為,,與的交點(diǎn)為,,若的面積為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)交軸于兩點(diǎn)(不重合),交軸于點(diǎn). 圓過(guò)三點(diǎn).下列說(shuō)法正確的是( )
① 圓心在直線上;
② 的取值范圍是;
③ 圓半徑的最小值為;
④ 存在定點(diǎn),使得圓恒過(guò)點(diǎn).
A. ①②③B. ①③④C. ②③D. ①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的個(gè)數(shù)是( ).
①“若,則,中至少有一個(gè)不小于2”的逆命題是真命題;
②命題“設(shè),若,則或”是一個(gè)真命題;
③命題,,則是的必要不充分條件;
④命題“,使得”的否定是:“,均有”.
A.4B.3C.2D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓,定義橢圓上的點(diǎn)的“伴隨點(diǎn)”為.
(1)求橢圓上的點(diǎn)的“伴隨點(diǎn)”的軌跡方程;
(2)如果橢圓上的點(diǎn)的“伴隨點(diǎn)”為,對(duì)于橢圓上的任意點(diǎn)及它的“伴隨點(diǎn)”,求的取值范圍;
(3)當(dāng), 時(shí),直線交橢圓于, 兩點(diǎn),若點(diǎn), 的“伴隨點(diǎn)”分別是, ,且以為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為提高產(chǎn)品質(zhì)量,某企業(yè)質(zhì)量管理部門經(jīng)常不定期地抽查產(chǎn)品進(jìn)行檢測(cè),現(xiàn)在某條生產(chǎn)線上隨機(jī)抽取100個(gè)產(chǎn)品進(jìn)行相關(guān)數(shù)據(jù)的對(duì)比,并對(duì)每個(gè)產(chǎn)品進(jìn)行綜合評(píng)分(滿分100分),將每個(gè)產(chǎn)品所得的綜合評(píng)分制成如圖所示的頻率分布直方圖.記綜合評(píng)分為80分及以上的產(chǎn)品為一等品.
(1)求圖中的值,并求綜合評(píng)分的中位數(shù);
(2)用樣本估計(jì)總體,以頻率作為概率,按分層抽樣的思想,先在該條生產(chǎn)線中隨機(jī)抽取5個(gè)產(chǎn)品,再?gòu)倪@5個(gè)產(chǎn)品中隨機(jī)抽取2個(gè)產(chǎn)品記錄有關(guān)數(shù)據(jù),求這2個(gè)產(chǎn)品中恰有一個(gè)一等品的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】團(tuán)體購(gòu)買公園門票,票價(jià)如下表:
購(gòu)票人數(shù) | 1~50 | 51~100 | 100以上 |
門票價(jià)格 | 13元/人 | 11元/人 | 9元/人 |
現(xiàn)某單位要組織其市場(chǎng)部和生產(chǎn)部的員工游覽該公園,這兩個(gè)部門人數(shù)分別為a和b,若按部門作為團(tuán)體,選擇兩個(gè)不同的時(shí)間分別購(gòu)票游覽公園,則共需支付門票費(fèi)為1290元;若兩個(gè)部門合在一起作為一個(gè)團(tuán)體,同一時(shí)間購(gòu)票游覽公園,則需支付門票費(fèi)為990元,那么這兩個(gè)部門的人數(shù)____;____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓:的左、右焦點(diǎn)分別為,,下頂點(diǎn)為,橢圓的離心率是,的面積是.
(1)求橢圓的標(biāo)準(zhǔn)方程.
(2)直線與橢圓交于,兩點(diǎn)(異于點(diǎn)),若直線與直線的斜率之和為1,證明:直線恒過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com