【題目】假設(shè)關(guān)于某設(shè)備的使用年限x和所支出的維修費(fèi)用y(單位:萬元)有如下的統(tǒng)計(jì)資料:
使用年限x/年 | 2 | 3 | 4 | 5 | 6 |
維修費(fèi)用y/萬元 | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
若由資料知y對(duì)x呈線性相關(guān)關(guān)系.試求:
(1)回歸方程x+的系數(shù).
(2)使用年限為10年時(shí),試估計(jì)維修費(fèi)用是多少.
【答案】(1)詳見解析;(2) 估計(jì)使用10年時(shí)維修費(fèi)用是12.38萬元.
【解析】【試題分析】(1)利用回歸直線方程計(jì)算公式,計(jì)算出回歸直線方程.(2)將代入回歸直線方程,可求得對(duì)應(yīng)維修費(fèi)用.
【試題解析】
(1)列表如下:
i | 1 | 2 | 3 | 4 | 5 |
xi | 2 | 3 | 4 | 5 | 6 |
yi | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
xiyi | 4.4 | 11.4 | 22.0 | 32.5 | 42.0 |
4 | 9 | 16 | 25 | 36 | |
=4,=5,=90,xiyi=112.3 |
==1.23,
=5-1.23×4=0.08.
(2)回歸直線方程是=1.23x+0.08.
當(dāng)x=10時(shí),=1.23×10+0.08=12.38(萬元),
即估計(jì)使用10年時(shí)維修費(fèi)用是12.38萬元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,甲船以每小時(shí)30海里的速度向正北方向航行,乙船按固定方向勻速直線航行.當(dāng)甲船位于A1處時(shí),乙船位于甲船的北偏西105°方向的B1處,此時(shí)兩船相距20海里.當(dāng)甲船航行20分鐘到達(dá)A2處時(shí),乙船航行到甲船的北偏西120°方向的B2處,此時(shí)兩船相距10海里,問乙船每小時(shí)航行多少海里?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】通過市場調(diào)查,得到某種產(chǎn)品的資金投入x(單位:萬元)與獲得的利潤y(單位:萬元)的數(shù)據(jù),如表所示:
資金投入x | 2 | 3 | 4 | 5 | 6 |
利潤y | 2 | 3 | 5 | 6 | 9 |
(1)畫出數(shù)據(jù)對(duì)應(yīng)的散點(diǎn)圖;
(2)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求線性回歸直線方程x+;
(3)現(xiàn)投入資金10萬元,求獲得利潤的估計(jì)值為多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:已知函數(shù)在上的最小值為,若恒成立,則稱函數(shù)在上具有“”性質(zhì).
()判斷函數(shù)在上是否具有“”性質(zhì)?說明理由.
()若在上具有“”性質(zhì),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等腰△ABC中,AB=BC,P在底邊AC上的任一點(diǎn),PE⊥AB于點(diǎn)E,PF⊥BC于點(diǎn)F,CD⊥AB于點(diǎn)D.求證:CD=PE+PF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一箱方便面共有50袋,用隨機(jī)抽樣方法從中抽取了10袋,并稱其質(zhì)量(單位:g)結(jié)果為:60.5 61 60 60 61.5 59.5 59.5 58 60 60
(1)指出總體、個(gè)體、樣本、樣本容量;
(2)指出樣本數(shù)據(jù)的眾數(shù)、中位數(shù)、平均數(shù);
(3)求樣本數(shù)據(jù)的方差.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第一屆“一帶一路”國際合作高峰論壇于2017年5月14日至15日在北京舉行,為了保護(hù)各國元首的安全,將5個(gè)安保小組全部安排到指定三個(gè)區(qū)域內(nèi)工作,且這三個(gè)區(qū)域每個(gè)區(qū)域至少有一個(gè)安保小組,則這樣的安排的方法共有( )
A.96種
B.100種
C.124種
D.150種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某市準(zhǔn)備在道路的一側(cè)修建一條運(yùn)動(dòng)比賽道,賽道的前一部分為曲線段,該曲線段是函數(shù), 時(shí)的圖象,且圖象的最高點(diǎn)為.賽道的中間部分為長千米的直線跑道,且.賽道的后一部分是以為圓心的一段圓弧.
(1)求的值和的大。
(2)若要在圓弧賽道所對(duì)應(yīng)的扇形區(qū)域內(nèi)建一個(gè)“矩形草坪”,矩形的一邊在道路上,一個(gè)頂點(diǎn)在半徑上,另外一個(gè)頂點(diǎn)在圓弧上,且,求當(dāng)“矩形草坪”的面積取最大值時(shí)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面平面,,是等邊三角形,已知,.
(1)設(shè)是上的一點(diǎn),證明:平面平面;
(2)求四棱錐的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com