【題目】定義:已知函數(shù)上的最小值為,若恒成立,則稱函數(shù)上具有性質(zhì).

)判斷函數(shù)上是否具有性質(zhì)?說明理由.

)若上具有性質(zhì),求的取值范圍.

【答案】(1)具有(2)

【解析】試題分析:(1)先根據(jù)二次函數(shù)性質(zhì)求最小值,再根據(jù)定義判斷是否具有性質(zhì),(2)先根據(jù)對(duì)稱軸與定義區(qū)間位置關(guān)系求函數(shù)最小值,再根據(jù)定義列不等式,解不等式可得的取值范圍.

試題解析:,

對(duì)稱軸,開口向上,

當(dāng)時(shí),取得最小值為,

,

∴函數(shù)上具有性質(zhì).

,,

其圖象的對(duì)稱軸方程為

①當(dāng),即時(shí),

若函數(shù)具有性質(zhì),則有總成立,即

②當(dāng),即時(shí),

若函數(shù)具有性質(zhì),則有總成立,解得無解.

③當(dāng),即時(shí),,

若函數(shù)具有性質(zhì),

則有,解得無解.

綜上所述,若上具有性質(zhì),則

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=2x3﹣9x2+12x+1的單調(diào)減區(qū)間是(
A.(1,2)
B.(2,+∞)
C.(﹣∞,1)
D.(﹣∞,1)和(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)是定義在R上的可導(dǎo)函數(shù),且滿足f′(x)>f(x),對(duì)任意的正數(shù)a,下面不等式恒成立的是(
A.f(a)<eaf(0)
B.f(a)>eaf(0)
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于函數(shù)f(x),若存在x0∈R,使f(x0)=x0 , 則稱x0是f(x)的一個(gè)不動(dòng)點(diǎn).
(1)若函數(shù)f(x)=2x+ ﹣5,求此函數(shù)的不動(dòng)點(diǎn);
(2)若二次函數(shù)f(x)=ax2﹣x+3在x∈(1,+∞)上有兩個(gè)不同的不動(dòng)點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,若存在實(shí)數(shù)a、b、c、d,滿足f(a)=f(b)=f(c)=f(d),其中d>c>b>a>0,則abcd的取值范圍是(
A.(16,21)
B.(16,24)
C.(17,21)
D.(18,24)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求函數(shù)y=的值的程序框圖如圖所示.

(1)指出程序框圖中的錯(cuò)誤,并寫出算法;

(2)重新繪制解決該問題的程序框圖,并回答下面提出的問題.

要使輸出的值為正數(shù),輸入的x的值應(yīng)滿足什么條件?

要使輸出的值為8,輸入的x值應(yīng)是多少?

要使輸出的y值最小,輸入的x值應(yīng)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】假設(shè)關(guān)于某設(shè)備的使用年限x和所支出的維修費(fèi)用y(單位:萬元)有如下的統(tǒng)計(jì)資料:

使用年限x/年

2

3

4

5

6

維修費(fèi)用y/萬元

2.2

3.8

5.5

6.5

7.0

若由資料知y對(duì)x呈線性相關(guān)關(guān)系.試求:

(1)回歸方程x+的系數(shù).

(2)使用年限為10年時(shí),試估計(jì)維修費(fèi)用是多少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班級(jí)舉行一次知識(shí)競(jìng)賽活動(dòng),活動(dòng)分為初賽和決賽兩個(gè)階段、現(xiàn)將初賽答卷成績(jī)(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),制成如下頻率分布表.

分?jǐn)?shù)(分?jǐn)?shù)段)

頻數(shù)(人數(shù))

頻率

[60,70)

0.16

[70,80)

22

[80,90)

14

0.28

[90,100)

合計(jì)

50

1


(1)填充頻率分布表中的空格(在解答中直接寫出對(duì)應(yīng)空格序號(hào)的答案);
(2)決賽規(guī)則如下:參加決賽的每位同學(xué)依次口答4道小題,答對(duì)2道題就終止答題,并獲得一等獎(jiǎng).如果前三道題都答錯(cuò),就不再答第四題.某同學(xué)進(jìn)入決賽,每道題答對(duì)的概率P的值恰好與頻率分布表中不少于80分的頻率的值相同. ①求該同學(xué)恰好答滿4道題而獲得一等獎(jiǎng)的概率;
②記該同學(xué)決賽中答題個(gè)數(shù)為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C極坐標(biāo)方程: ,點(diǎn)P極坐標(biāo)為 ,直線l過點(diǎn)P,且傾斜角為
(1)求曲線C的直角坐標(biāo)方程及直線l參數(shù)方程;
(2)若直線l與曲線C交于A,B兩點(diǎn),求

查看答案和解析>>

同步練習(xí)冊(cè)答案