【題目】已知函數(shù).
(1)設,求的最大值及相應的值;
(2)對任意正數(shù)恒有,求的取值范圍.
【答案】(1)當時,取得最大值;(2)
【解析】
(1)先化簡函數(shù)g(x)=lnx﹣f′(x)f(x)=lnx﹣(2x﹣1)(x2﹣x),從而求定義域;再求導g′(x);從而確定函數(shù)的最大值及相應的值;
(2)f(x)+f()≥(x)lnm可化為x2﹣x(x)lnm;從而化為lnm;化簡得1=(x)1;從而利用換元法求函數(shù)的最值,從而化恒成立問題為最值問題.
(1)∵,∴,
∴
則
∵的定義域為,∴
①當時,;②當時,;③當時,
因此在上是增函數(shù),在上是減函數(shù),
故當時,取得最大值.
(2)由(1)可知,
不等式可化為①
因為,所以(當且僅當取等號)
設,則把①式可化為,即(對恒成立)
令,此函數(shù)在上是增函數(shù),
所以的最小值為
于是,即.
科目:高中數(shù)學 來源: 題型:
【題目】如圖:設一正方形紙片ABCD邊長為2分米,切去陰影部分所示的四個全等的等腰三角形,剩余為一個正方形和四個全等的等腰三角形,沿虛線折起,恰好能做成一個正四棱錐(粘接損耗不計),圖中,O為正四棱錐底面中心.
(Ⅰ)若正四棱錐的棱長都相等,求這個正四棱錐的體積V;
(Ⅱ)設等腰三角形APQ的底角為x,試把正四棱錐的側面積S表示為x的函數(shù),并求S的范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《九章算術》是我國古代數(shù)學文化的優(yōu)秀遺產(chǎn),數(shù)學家劉徽在注解《九章算術》時,發(fā)現(xiàn)當圓內(nèi)接正多邊行的邊數(shù)無限增加時,多邊形的面積可無限逼近圓的面積,為此他創(chuàng)立了割圓術,利用割圓術,劉徽得到了圓周率精確到小數(shù)點后四位3.1416,后人稱3.14為徽率,如圖是利用劉徽的割圓術設計的程序框圖,若結束程序時,則輸出的為( )(,,)
A. 6 B. 12 C. 24 D. 48
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l:與拋物線C:相切.
(1)求拋物線方程;
(2)斜率不為0的直線經(jīng)過拋物線C的焦點F,交拋物線于兩點A,B,拋物線C上是否存在兩點D,E關于直線對稱.若存在求出斜率k的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(1)由0,1,2,…,9這十個數(shù)字組成的無重復數(shù)字的四位數(shù)中,十位數(shù)字與千位數(shù)字之差的絕對值等于7的四位數(shù)的個數(shù)共有幾種?
(2)我校高三學習雷鋒志愿小組共有16人,其中一班、二班、三班、四班各4人,現(xiàn)在從中任選3人,要求這三人不能是同一個班級的學生,且在三班至多選1人,求不同的選取法的種數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底數(shù),).
(1)求函數(shù)在點處的切線方程;
(2)若對于任意,存在,使得,求的取值范圍;
(3)若恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2018年是中國改革開放的第40周年,為了充分認識新形勢下改革開放的時代性,某地的民調(diào)機構隨機選取了該地的100名市民進行調(diào)查,將他們的年齡分成6段:,并繪制了如圖所示的頻率分布直方圖.
(1)現(xiàn)從年齡在內(nèi)的人員中按分層抽樣的方法抽取8人,再從這8人中隨機抽取3人進行座談,用表示年齡在內(nèi)的人數(shù),求的分布列和數(shù)學期望;
(2)若用樣本的頻率代替概率,用隨機抽樣的方法從該地抽取20名市民進行調(diào)查,其中有名市民的年齡在的概率為.當最大時,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校從學生文藝部6名成員(4男2女)中,挑選2人參加學校舉辦的文藝匯演活動.
(1)求男生甲被選中的概率;
(2)在已知男生甲被選中的條件下,女生乙被選中的概率;
(3)在要求被選中的兩人中必須一男一女的條件下,求女生乙被選中的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com