【題目】某公司培訓(xùn)員工某項(xiàng)技能,培訓(xùn)有如下兩種方式,方式一:周一到周五每天培訓(xùn)1小時(shí),周日測(cè)試;方式二:周六一天培訓(xùn)4小時(shí),周日測(cè)試.公司有多個(gè)班組,每個(gè)班組60人,現(xiàn)任選兩組(記為甲組、乙組)先培訓(xùn),甲組選方式一,乙組選方式二,并記錄每周培訓(xùn)后測(cè)試達(dá)標(biāo)的人數(shù)如下表,其中第一、二周達(dá)標(biāo)的員工評(píng)為優(yōu)秀.

第一周

第二周

第三周

第四周

甲組

20

25

10

5

乙組

8

16

20

16

(1)在甲組內(nèi)任選兩人,求恰有一人優(yōu)秀的概率;

(2)每個(gè)員工技能測(cè)試是否達(dá)標(biāo)相互獨(dú)立,以頻率作為概率.

(i)設(shè)公司員工在方式一、二下的受訓(xùn)時(shí)間分別為、,求、的分布列,若選平均受訓(xùn)時(shí)間少的,則公司應(yīng)選哪種培訓(xùn)方式?

(ii)按(i)中所選方式從公司任選兩人,求恰有一人優(yōu)秀的概率.

【答案】(1)(2)(i)見(jiàn)解析(ii)

【解析】

(1)甲組人中有人優(yōu)秀,利用超幾何分布概率計(jì)算公式,計(jì)算得“甲組內(nèi)任選兩人,求恰有一人優(yōu)秀的概率”.(2)可能取值有,根據(jù)題目所給數(shù)據(jù)計(jì)算出每種取值對(duì)應(yīng)的頻率也即概率,由此得到分布列并其算出期望值.的所有可能取值為,根據(jù)題目所給數(shù)據(jù)計(jì)算出每種取值對(duì)應(yīng)的頻率也即概率,由此得到分布列并其算出期望值.根據(jù)兩個(gè)期望值較小的即為選擇.(3)先計(jì)算出從公司任選一人,優(yōu)秀率為,再按照二項(xiàng)分布的概率計(jì)算公式計(jì)算得“從公司任選兩人,求恰有一人優(yōu)秀的概率”

解:(1)甲組60人中有45人優(yōu)秀,任選兩人,

恰有一人優(yōu)秀的概率為;

(2)(i)的分布列為

5

10

15

20

P

的分布列為

4

8

12

16

P

,

,∴公司應(yīng)選培訓(xùn)方式一;

(ii)按培訓(xùn)方式一,從公司任選一人,其優(yōu)秀的概率為,

則從公司任選兩人,恰有一人優(yōu)秀的概率為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)試討論函數(shù)的導(dǎo)函數(shù)的零點(diǎn)個(gè)數(shù);

(2)若對(duì)任意的,關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人做游戲,下列游戲不公平的是(

A.拋擲一枚骰子,向上的點(diǎn)數(shù)為奇數(shù)則甲獲勝,向上的點(diǎn)數(shù)為偶數(shù)則乙獲勝

B.甲、乙兩人各寫(xiě)一個(gè)數(shù)字12,如果兩人寫(xiě)的數(shù)字相同甲獲勝,否則乙獲勝

C.從一副不含大小王的撲克牌中抽一張,撲克牌是紅色的則甲獲勝,撲克牌是黑色的則乙獲勝

D.同時(shí)拋擲兩枚硬幣,恰有一枚正面向上則甲獲勝,兩枚都正面向上則乙獲勝

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】海水養(yǎng)殖場(chǎng)進(jìn)行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對(duì)比,收獲時(shí)各隨機(jī)抽取了100個(gè)網(wǎng)箱,測(cè)量各箱水產(chǎn)品的產(chǎn)量(單位:kg), 其頻率分布直方圖如下:

(1)記A表示事件“舊養(yǎng)殖法的箱產(chǎn)量低于50 kg”,估計(jì)A的概率;

(2)填寫(xiě)下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān):

箱產(chǎn)量<50 kg

箱產(chǎn)量≥50 kg

舊養(yǎng)殖法

新養(yǎng)殖法

(3)根據(jù)箱產(chǎn)量的頻率分布直方圖,對(duì)這兩種養(yǎng)殖方法的優(yōu)劣進(jìn)行比較.

附:

P

0.050 0.010 0.001

k

3.841 6.635 10.828

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠生產(chǎn)某種型號(hào)的農(nóng)機(jī)具零配件,為了預(yù)測(cè)今年7月份該型號(hào)農(nóng)機(jī)具零配件的市場(chǎng)需求量,以合理安排生產(chǎn),工廠對(duì)本年度1月份至6月份該型號(hào)農(nóng)機(jī)具零配件的銷(xiāo)售量及銷(xiāo)售單價(jià)進(jìn)行了調(diào)查,銷(xiāo)售單價(jià)(單位:元)和銷(xiāo)售量(單位:千件)之間的6組數(shù)據(jù)如下表所示:

月份

1

2

3

4

5

6

銷(xiāo)售單價(jià)(元)

11.1

9.1

9.4

10.2

8.8

11.4

銷(xiāo)售量(千件)

2.5

3.1

3

2.8

3.2

2.4

1)根據(jù)16月份的數(shù)據(jù),求關(guān)于的線(xiàn)性回歸方程(系數(shù)精確到0.01);

2)結(jié)合(1)中的線(xiàn)性回歸方程,假設(shè)該型號(hào)農(nóng)機(jī)具零配件的生產(chǎn)成本為每件3元,那么工廠如何制定7月份的銷(xiāo)售單價(jià),才能使該月利潤(rùn)達(dá)到最大?(計(jì)算結(jié)果精確到0.1

參考公式:回歸直線(xiàn)方程,

參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),若關(guān)于的方程有四個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某化工企業(yè)2018年年底投入100萬(wàn)元,購(gòu)入一套污水處理設(shè)備。該設(shè)備每年的運(yùn)轉(zhuǎn)費(fèi)用是0.5萬(wàn)元,此外,每年都要花費(fèi)一定的維護(hù)費(fèi),第一年的維護(hù)費(fèi)為2萬(wàn)元,由于設(shè)備老化,以后每年的維護(hù)費(fèi)都比上一年增加2萬(wàn)元。設(shè)該企業(yè)使用該設(shè)備年的年平均污水處理費(fèi)用為(單位:萬(wàn)元)

(1)用表示;

(2)當(dāng)該企業(yè)的年平均污水處理費(fèi)用最低時(shí),企業(yè)需重新更換新的污水處理設(shè)備。則該企業(yè)幾年后需要重新更換新的污水處理設(shè)備。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)大于1的自然數(shù),除了1和它本身外,不能被其他自然數(shù)整除,則稱(chēng)這個(gè)數(shù)為質(zhì)數(shù).質(zhì)數(shù)的個(gè)數(shù)是無(wú)窮的.設(shè)由所有質(zhì)數(shù)組成的無(wú)窮遞增數(shù)列的前項(xiàng)和為,等差數(shù)列1,3,5,7,…中所有不大于的項(xiàng)的和為

(Ⅰ)求;

(Ⅱ)判斷的大小,不用證明;

(Ⅲ)設(shè),求證:,,使得

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)拋物線(xiàn)的焦點(diǎn)且斜率為1的直線(xiàn)與拋物線(xiàn)交于兩點(diǎn),且.

1)求拋物線(xiàn)的方程;

2)點(diǎn)是拋物線(xiàn)上異于、的任意一點(diǎn),直線(xiàn)、與拋物線(xiàn)的準(zhǔn)線(xiàn)分別交于點(diǎn)、,求證:為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案