【題目】已知一圓的圓心在直線上,且該圓經過和兩點.
(1)求圓的標準方程;
(2)若斜率為的直線與圓相交于,兩點,試求面積的最大值和此時直線的方程.
【答案】(1)(2)最大值2,或.
【解析】
(1)方法一、求得的垂直平分線方程與已知直線聯(lián)立,求得圓心,可得半徑,即可得到所求圓的方程;
方法二、設圓的方程為,將點代入可得,,的方程組,解方程可得圓的方程;
(2)直線與圓相交,設直線的方程為,求得圓心到直線的距離和弦長,由三角形的面積公式,化為關于的二次函數,求得最值,進而求得,可得所求直線方程;
(1)方法一:和兩點的中垂線方程為:,
圓心必在弦的中垂線上,聯(lián)立得,
半徑,所以圓的標準方程為:.
方法二:設圓的標準方程為:,
由題得:,解得:
所以圓的標準方程為:.
(2)設直線的方程為,圓心到直線的距離為,
∴,且,,
面積,
當,時,取得最大值2
此時,解得:或
所以,直線的方程為:或.
科目:高中數學 來源: 題型:
【題目】設,是兩條不同的直線,,,是三個不同的平面,給出下列四個命題:
①若,,則
②若,,,則
③若,,則
④若,,則
其中正確命題的序號是( )
A.①和②B.②和③C.③和④D.①和④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】孝感車天地關于某品牌汽車的使用年限(年)和所支出的維修費用(千元)由如表的統(tǒng)計資料:
2 | 3 | 4 | 5 | 6 | |
2.1 | 3.4 | 5.9 | 6.6 | 7.0 |
(1)畫出散點圖并判斷使用年限與所支出的維修費用是否線性相關;如果線性相關,求回歸直線方程;
(2)若使用超過8年,維修費用超過1.5萬元時,車主將處理掉該車,估計第10年年底時,車主是否會處理掉該車?
()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列的前項和,對任意正整數,總存在正數使得, 恒成立:數列的前項和,且對任意正整數, 恒成立.
(1)求常數的值;
(2)證明數列為等差數列;
(3)若,記 ,是否存在正整數,使得對任意正整數, 恒成立,若存在,求正整數的最小值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知某運動員每次投籃命中的概率為80%.現采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器產生0到9之間取整數值的隨機數,指定1,2,3,4,5,6,7,8表示命中,9,0表示未命中;再以每三個隨機數為一組,代表三次投籃的結果.經隨機模擬產生了如下20組隨機數:
907 | 966 | 191 | 925 | 271 | 932 | 812 | 458 | 569 | 683 |
431 | 257 | 393 | 027 | 556 | 488 | 730 | 113 | 537 | 989 |
據此估計,該運動員三次投籃均命中的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為,點在橢圓上.
(1)求橢圓的方程;
(2)若不過原點的直線與橢圓相交于兩點,與直線相交于點,且是線段的中點,求面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學生對某小區(qū)30位居民的飲食習慣進行了一次調查,并用如圖所示的莖葉圖表示他們的飲食指數(說明:圖中飲食指數低于70的人,飲食以蔬菜為主;飲食指數高于70的,飲食以肉類為主).
(1)根據莖葉圖,說明這30位居民中50歲以上的人的飲食習慣;
(2)根據以上數據完成如下2×2列聯(lián)表;
主食蔬菜 | 主食肉類 | 總計 | |
50歲以下 | |||
50歲以上 | |||
總計 |
(3)能否有99%的把握認為居民的飲食習慣與年齡有關?
獨立性檢驗的臨界值表
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
參考公式:,其中.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2018年9月16日下午5時左右,今年第22號臺風“山竹”在廣東江門川島鎮(zhèn)附近正面登陸,給當地人民造成了巨大的財產損失,某記者調查了當地某小區(qū)的100戶居民由于臺風造成的經濟損失,將收集的數據分成,,,,五組,并作出如下頻率分布直方圖.
(Ⅰ)根據頻率分布直方圖估計該小區(qū)居民由于臺風造成的經濟損失的眾數和平均值.
(Ⅱ)“一方有難,八方支援”,臺風后居委會號召小區(qū)居民為臺風重災區(qū)捐款,記者調查的100戶居民捐款情況如下表格,在表格空白處填寫正確數字,并說明是否有99%以上的把握認為捐款數額多于或少于500元和自身經濟損失是否到4000元有關?
(Ⅲ)將上述調查所得到的頻率視為概率,現在從該地區(qū)大量受災居民中,采用隨機抽樣方法每次抽取1戶居民,抽取3次,記被抽取的3戶居民中自身經濟損失超過元的人數為,若每次抽取的結果是相互獨立的,求的分布列及期望.
參考公式:,其中
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com