【題目】已知數(shù)列的前項(xiàng)和,對(duì)任意正整數(shù),總存在正數(shù)使得, 恒成立:數(shù)列的前項(xiàng)和,且對(duì)任意正整數(shù), 恒成立.

(1)求常數(shù)的值;

(2)證明數(shù)列為等差數(shù)列;

(3)若,記 ,是否存在正整數(shù),使得對(duì)任意正整數(shù), 恒成立,若存在,求正整數(shù)的最小值,若不存在,請(qǐng)說明理由.

【答案】(1)(2)見解析(3)正整數(shù)的最小值為4

【解析】試題分析:(1根據(jù) ,可得,根據(jù)題意令,即可求出,從而求出;(2)由,得,兩式做差得,從而可證數(shù)列為等差數(shù)列;(3)根據(jù)(2)可得,結(jié)合(1),表示出,作出,然后令,即可求出的最大值,從而求出正整數(shù)的最小值.

試題解析:(1)∵

②,

①-②得: ,即 ,

,

時(shí), ; 時(shí), .

為正數(shù)

.

又∵, ,且

.

(2)∵

∴當(dāng)時(shí), ④,

∴③-④得: ,即⑤,

又∵

∴⑤+⑥得: ,即

為等差數(shù)列.

(3)∵ ,由(2)知為等差數(shù)列

.

又由(1)知,

,

又∵

,

,

,解得,

時(shí), ,即,

時(shí), ,

,即.

此時(shí),即,

的最大值為

若存在正整數(shù),使得對(duì)任意正整數(shù) 恒成立,則,

∴正整數(shù)的最小值為4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列中,,).

1)求的值;

2)是否存在實(shí)數(shù),使得數(shù)列為等差數(shù)列?若存在,求出的值;若不存在,請(qǐng)說明理由;

3)設(shè)數(shù)列的前n項(xiàng)和為,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P-ABCD中,底面為菱形,且,

)求證: ;

)若,求二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】20171018日至1024日,中國(guó)共產(chǎn)黨第十九次全國(guó)代表大會(huì)簡(jiǎn)稱黨的“十九大”在北京召開一段時(shí)間后,某單位就“十九大”精神的領(lǐng)會(huì)程度隨機(jī)抽取100名員工進(jìn)行問卷調(diào)查,調(diào)查問卷共有20個(gè)問題,每個(gè)問題5分,調(diào)查結(jié)束后,發(fā)現(xiàn)這100名員工的成績(jī)都在內(nèi),按成績(jī)分成5組:第1,第2,第3,第4,第5,繪制成如圖所示的頻率分布直方圖,已知甲、乙、丙分別在第3,4,5組,現(xiàn)在用分層抽樣的方法在第3,4,5組共選取6人對(duì)“十九大”精神作深入學(xué)習(xí).

求這100人的平均得分同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表

求第3,4,5組分別選取的作深入學(xué)習(xí)的人數(shù);

若甲、乙、丙都被選取對(duì)“十九大”精神作深入學(xué)習(xí),之后要從這6人隨機(jī)選取2人再全面考查他們對(duì)“十九大”精神的領(lǐng)會(huì)程度,求甲、乙、丙這3人至多有一人被選取的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線x2=4y

(1)求拋物線在點(diǎn)P(2,1)處的切線方程;

(2)若不過原點(diǎn)的直線l與拋物線交于AB兩點(diǎn)(如圖所示),且OAOB,|OA|=|OB|,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一圓的圓心在直線上,且該圓經(jīng)過兩點(diǎn).

1)求圓的標(biāo)準(zhǔn)方程;

2)若斜率為的直線與圓相交于,兩點(diǎn),試求面積的最大值和此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為矩形,平面,,的中點(diǎn),是線段上的一動(dòng)點(diǎn).

(1)當(dāng)是線段的中點(diǎn)時(shí),證明:平面

(2)當(dāng)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的多面體中,已知 , 是正三角形, , , 的中點(diǎn).

1)求證: 平面;

2)求證:平面平面;

3)求到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】要測(cè)量底部不能到達(dá)的電視塔AB的高度,C點(diǎn)測(cè)得塔頂A的仰角是45°,D點(diǎn)測(cè)得塔頂A的仰角是30°,并測(cè)得水平面上的∠BCD=120°,CD="40" m,則電視塔的高度為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案