【題目】已知函數(shù)f(x)= 的圖象上關(guān)于y軸對稱的點至少有3對,則實數(shù)a的取值范圍是( )
A.
B.
C.
D.

【答案】A
【解析】解:若x>0,則﹣x<0,
∵x<0時,f(x)=sin( )﹣1,
∴f(﹣x)=sin(﹣ )﹣1=﹣sin( )﹣1,
則若f(x)=sin( )﹣1,(x<0)關(guān)于y軸對稱,
則f(﹣x)=﹣sin( )﹣1=f(x),
即y=﹣sin( )﹣1,x>0,
設(shè)g(x)=﹣sin( )﹣1,x>0
作出函數(shù)g(x)的圖象,要使y=﹣sin( )﹣1,x>0與f(x)=logax,x>0的圖象至少有3個交點,
則0<a<1且滿足g(5)<f(5),
即﹣2<loga5,
即loga5> ,
則5 ,
解得0<a< ,
故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域為R的函數(shù)是奇函數(shù).

(1)a,b的值;

(2)解關(guān)于t的不等式f(t2-2t)+f(2t2-1)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐中,平面

,,。分別為線段上的點,且

(1)證明:平面;

(2)求二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中_________為真命題.

①“A∩B=A”成立的必要條件是“AB”w ②“x2+y2=0,則x,y全為0”的否命題;

③“全等三角形是相似三角形的逆命題; ④“圓內(nèi)接四邊形對角互補的逆否命題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,F(xiàn)1、F2分別是雙曲線 =1(a>0,b>0)的兩個焦點,以坐標原點O為圓心,|OF1|為半徑的圓與該雙曲線左支交于A、B兩點,若△F2AB是等邊三角形,則雙曲線的離心率為 (

A.
B.2
C. ﹣1
D.1+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是定義在上的奇函數(shù),其圖象如圖所示,令,則下列關(guān)于函數(shù)的敘述正確的是()

A. ,則函數(shù)的圖象關(guān)于原點對稱

B. ,則方程有大于2的實根

C. ,則方程有兩個實根

D. ,則方程有兩個實根

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是圓O的直徑,PA垂直圓所在的平面,C是圓上的點.

(1)求證:平面PAC平面PBC;

(2)若AC=1,PA=1,求圓心O到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=|2x﹣1|.
(1)求f(x)≤3x的解集;
(2)求f(x)+|x+1|≤1的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求f(x)的定義域和值域;

(2)判斷f(x)的奇偶性與單調(diào)性;

(3)解關(guān)于x的不等式f(x2﹣2x+2)+f(﹣5)<0.

查看答案和解析>>

同步練習(xí)冊答案