【題目】如圖,一塊黃銅板上插著三根寶石針,在其中一根針上從下到上穿好由大到小的若干金片.若按照下面的法則移動這些金片:每次只能移動一片金片;每次移動的金片必須套在某根針上;大片不能疊在小片上面.設移完片金片總共需要的次數(shù)為,可推得.求移動次數(shù)的程序框圖模型如圖所示,則輸出的結果是( )

A. 1022 B. 1023 C. 1024 D. 1025

【答案】B

【解析】

根據(jù)移動方法與規(guī)律發(fā)現(xiàn),隨著盤子數(shù)目的增多,都是分兩個階段移動,用盤子數(shù)目減1的移動次數(shù)都移動到柱,然后把最大的盤子移動到柱,再用同樣的次數(shù)從柱移動到,從而完成,然后根據(jù)移動次數(shù)的數(shù)據(jù)找出總的規(guī)律求解即可.

個金屬片從號針移動到號針最少需要;

則據(jù)算法思想有:

;

第一次循環(huán);

第二次循環(huán),;

第三次循環(huán),

…,

第九次循環(huán),,輸出故選B.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,幾何體是圓柱的一部分,它是由矩形ABCD(及其內部)以AB邊所在直線為旋轉軸旋轉120°得到的,G是的中點.

(1)設P是上的一點,且AP⊥BE,求∠CBP的大。

(2)當AB=3,AD=2時,求二面角E-AG-C的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點A(0,-2),橢圓E (a>b>0)的離心率為F是橢圓E的右焦點,直線AF的斜率為,O為坐標原點.

(1)E的方程;

(2)設過點A的動直線lE相交于PQ兩點.OPQ的面積最大時,求l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某賽季,甲、乙兩名籃球運動員都參加了場比賽,他們所有比賽得分的情況如下:

甲:;

乙: .

(1)求甲、乙兩名運動員得分的中位數(shù).

(2)分別求甲、乙兩名運動員得分的平均數(shù)、方差,你認為哪位運動員的成績更穩(wěn)定?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下表中的數(shù)表為森德拉姆篩”(森德拉姆,東印度學者),其特點是每行每列都成等差數(shù)列.

2

3

4

5

6

7

3

5

7

9

11

13

4

7

10

13

16

19

5

9

13

17

21

25

6

11

16

21

26

31

7

13

19

25

31

37

在上表中,2017出現(xiàn)的次數(shù)為(

A. 18 B. 36 C. 48 D. 72

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大學進行自主招生時,需要進行邏輯思維和閱讀表達兩項能力的測試.學校對參加測試的200名學生的邏輯思維成績、閱讀表達成績以及這兩項的總成績進行了排名.其中甲、乙、丙三位同學的排名情況如下圖所示:

得出下面四個結論:

甲同學的邏輯排名比乙同學的邏輯排名更靠前

②乙同學的邏輯思維成績排名比他的閱讀表達成績排名更靠前

③甲、乙、丙三位同學的邏輯思維成績排名中,甲同學更靠前

④甲同學的閱讀表達成績排名比他的邏輯思維成績排名更靠前

則所有正確結論的序號是_________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當時,(i)求曲線在點處的切線方程;

(ii)求函數(shù)的單調區(qū)間;

(Ⅱ)若,求證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

(1)當時, 恒成立,求的范圍;

(2)若處的切線為,求的值.并證明當)時, .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從甲、乙兩名學生中選拔一人參加射箭比賽,為此需要對他們的射箭水平進行測試.現(xiàn)這兩名學生在相同條件下各射箭10次,命中的環(huán)數(shù)如下:

8

9

7

9

7

6

10

10

8

6

10

9

8

6

8

7

9

7

8

8

(1)計算甲、乙兩人射箭命中環(huán)數(shù)的平均數(shù)和標準差;

(2)比較兩個人的成績,然后決定選擇哪名學生參加射箭比賽.

查看答案和解析>>

同步練習冊答案