【題目】從甲、乙兩名學(xué)生中選拔一人參加射箭比賽,為此需要對他們的射箭水平進(jìn)行測試.現(xiàn)這兩名學(xué)生在相同條件下各射箭10次,命中的環(huán)數(shù)如下:
甲 | 8 | 9 | 7 | 9 | 7 | 6 | 10 | 10 | 8 | 6 |
乙 | 10 | 9 | 8 | 6 | 8 | 7 | 9 | 7 | 8 | 8 |
(1)計(jì)算甲、乙兩人射箭命中環(huán)數(shù)的平均數(shù)和標(biāo)準(zhǔn)差;
(2)比較兩個(gè)人的成績,然后決定選擇哪名學(xué)生參加射箭比賽.
【答案】(1)見解析;(2)見解析
【解析】試題分析:(1)根據(jù)所給的數(shù)據(jù),利用平均數(shù)和標(biāo)準(zhǔn)差的計(jì)算公式,分別求解,即可得到答案;(2)比較甲和乙的標(biāo)準(zhǔn)差的大小,根據(jù)標(biāo)準(zhǔn)差越小,其穩(wěn)定性越好,即可得到答案
試題解析:(1)根據(jù)題中所給數(shù)據(jù),則甲的平均數(shù)為,
乙的平均數(shù)為,
甲的標(biāo)準(zhǔn)差為,
乙的標(biāo)準(zhǔn)差為,
故甲的平均數(shù)為8,標(biāo)準(zhǔn)差為,乙的平均數(shù)為8,標(biāo)準(zhǔn)差為;
(2),且,
乙的成績較為穩(wěn)定, 故選擇乙參加射箭比賽.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)滿足f(2+x)=f(2﹣x),其圖象開口向上,頂點(diǎn)為A,與x軸交于點(diǎn)B(﹣1,0)和C點(diǎn),且△ABC的面積為18.
(1)求此二次函數(shù)的解析式;
(2)若方程f(x)=m(x﹣1)在區(qū)間[0,1]有解,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)滿足對任意的m,n都有f(m+n)=f(m)+f(n)-1,設(shè)g(x)=f(x)+(a>0,a≠1),g(ln2018)=-2015,則g(ln)=______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中, 平面,四邊形為正方形,且, 為線段的中點(diǎn).
(Ⅰ)求證: 平面;
(Ⅱ)求直線與平面所成角的正弦值;
(Ⅲ)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)與g(x)是定義在同一區(qū)間[a,b]上的兩個(gè)函數(shù),若函數(shù)y=f(x)-g(x)在x∈[a,b]上有兩個(gè)不同的零點(diǎn),則稱f(x)和g(x)在[a,b]上是“關(guān)聯(lián)函數(shù)”,區(qū)間[a,b]稱為“關(guān)聯(lián)區(qū)間”.若f(x)=x2-3x+4與g(x)=2x+m在[0,3]上是“關(guān)聯(lián)函數(shù)”,則m的取值范圍是 ( ).
A. B.[-1,0] C.(-∞,-2] D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A、B、C所對的邊分別為a、b、c,f (x)=sin(2x﹣A) (x∈R),函數(shù)f(x)的圖象關(guān)于點(diǎn)( ,0)對稱.
(1)當(dāng)x∈(0, )時(shí),求f (x)的值域;
(2)若a=7且sinB+sinC= ,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高二年級(jí)有甲、乙、丙三個(gè)班參加社會(huì)實(shí)踐活動(dòng),高二年級(jí)老師要分到各個(gè)班級(jí)帶隊(duì),其中男女老師各一半,每次任選兩個(gè)老師,將其中一個(gè)老師分到甲班,如果這個(gè)老師是男老師,就將另一個(gè)老師分到乙班,否則就分到丙班,重復(fù)上述過程,直到所有老師都分到班級(jí),則
A. 乙班女老師不多于丙班女老師 B. 乙班男老師不多于丙班男老師
C. 乙班男老師與丙班女老師一樣多 D. 乙班女老師與丙班男老師一樣多
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a為實(shí)數(shù),函數(shù)f(x)=+a+a.
(1)設(shè)t=,求t的取值范圖;
(2)把f(x)表示為t的函數(shù)h(t);
(3)設(shè)f (x)的最大值為M(a),最小值為m(a),記g(a)=M(a)-m(a)求g(a)的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=滿足:對任意的實(shí)數(shù)x1≠x2,都有(x1-x2)[f(x1)-f(x2)]>0成立,則實(shí)數(shù)a的取值范圍是(。
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com