【題目】某班有50名學(xué)生,在一次考試中統(tǒng)計(jì)出平均分?jǐn)?shù)為70,方差為75,后來(lái)發(fā)現(xiàn)有2名學(xué)生的成績(jī)統(tǒng)計(jì)有誤,學(xué)生甲實(shí)際得分是80分卻誤記為60分,學(xué)生乙實(shí)際得分是70分卻誤記為90分,更正后的平均分?jǐn)?shù)和方差分別是(

A. 7050 B. 7067 C. 7550 D. 7567

【答案】B

【解析】

根據(jù)平均數(shù)、方差的概念表示出更正前的平均數(shù)、方差和更正后的平均數(shù)、方差,比較其異同,然后整體代入即可求解.

設(shè)更正前甲,乙,…的成績(jī)依次為a1,a2,…,a50

a1+a2++a5050×70,即60+90+a3++a5050×70,

a1702+a2702++a5070250×75,

102+202+a3702++a5070250×75

更正后平均分為×(80+70+a3++a50)=70;

方差為s2×[80702+70702+a3702++a50702]

×[100+a3702++a50702]

×[100+50×75102202]67

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司擬設(shè)計(jì)一個(gè)扇環(huán)形狀的花壇(如圖所示),該扇環(huán)是由以點(diǎn)為圓心的兩個(gè)同心圓弧和延長(zhǎng)后通過(guò)點(diǎn)的兩條線段圍成.設(shè)圓弧所在圓的半徑分別為、米,圓心角為(弧度).

1)若,,,求花壇的面積;

2)設(shè)計(jì)時(shí)需要考慮花壇邊緣(實(shí)線部分)的裝飾問(wèn)題,已知直線部分的裝飾費(fèi)用為/米,弧線部分的裝飾費(fèi)用為/米,預(yù)算費(fèi)用總計(jì)元,問(wèn)線段的長(zhǎng)度為多少時(shí),花壇的面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是奇函數(shù),其中a>1.

(1)求實(shí)數(shù)m的值;

(2)討論函數(shù)f(x)的增減性;

(3)當(dāng)時(shí),f(x)的值域是(1,+∞),求n與a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于函數(shù),下列選項(xiàng)中正確的有(

A.的定義域?yàn)?/span>

B.為奇函數(shù)

C.在定義域上是增函數(shù)

D.函數(shù)是同一個(gè)函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),若函數(shù)內(nèi)有兩個(gè)極值點(diǎn),則實(shí)數(shù)的取值范圍是( )

A. B. (0,1)

C. (0,2) D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠生產(chǎn)一種機(jī)器的固定成本為0.5萬(wàn)元,但每生產(chǎn)100臺(tái),需要加可變成本(即另增加投入)0.25萬(wàn)元,市場(chǎng)對(duì)此產(chǎn)品的年求量為500臺(tái),銷(xiāo)售的收入函數(shù)為(萬(wàn)元)(),其中是產(chǎn)品售出的數(shù)量(單位:百臺(tái)).

1)把利潤(rùn)表示為年產(chǎn)量的函數(shù);

2)年產(chǎn)量是多少時(shí),工廠所得利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在上的奇函數(shù),當(dāng)時(shí),.

1)求函數(shù)的解析式;

2)畫(huà)出函數(shù)上的圖象;

3)解關(guān)于的不等式(其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),直線

)求函數(shù)的極值;

)求證:對(duì)于任意,直線都不是曲線的切線;

)試確定曲線與直線的交點(diǎn)個(gè)數(shù),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知不等式ax2-5x+b>0的解是-3<x<2,設(shè)A={x|bx2-5x+a>0},B={x|}.

(1)求a,b的值;

(2)求ABA∪(UB).

查看答案和解析>>

同步練習(xí)冊(cè)答案