【題目】已知定義在上的奇函數(shù),當(dāng)時,.
(1)求函數(shù)的解析式;
(2)畫出函數(shù)在上的圖象;
(3)解關(guān)于的不等式(其中).
【答案】(1);(2)圖象見解析;(3)見解析
【解析】
(1)根據(jù)函數(shù)奇偶性的對稱性,即可求函數(shù)f(x)在R上的解析式;
(2)由(1)畫出函數(shù)f(x)的圖象;
(3)根據(jù)函數(shù)單調(diào)性,得x的一元二次不等式,分解因式,討論兩根大小解不等式即可;
(1)設(shè)x<0,﹣x>0,則f(﹣x)=
又f(x)為奇函數(shù),所以f(﹣x)=﹣f(x),于是x<0時f(x)=,
所以
(2)
(3)由(2)知f(x)在R上單調(diào)遞減,
故等價為
當(dāng)時,;
當(dāng)時,;
當(dāng)時,;
當(dāng)時,;當(dāng)時,或.
綜上:當(dāng)時,不等式解集為;
當(dāng)時,不等式解集為;
當(dāng)時,不等式解集為;
當(dāng)時,不等式解集為;
當(dāng)時,不等式解集為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時,求函數(shù)的極值點;
(2)當(dāng)時,證明:在上恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的個數(shù)是( )
①命題“任意”的否定是“任意;
②命題“若,則”的逆否命題是真命題;
③若命題為真,命題為真,則命題且為真;
④命題“若,則”的否命題是“若,則”.
A. 個 B. 個 C. 個 D. 個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班有50名學(xué)生,在一次考試中統(tǒng)計出平均分?jǐn)?shù)為70,方差為75,后來發(fā)現(xiàn)有2名學(xué)生的成績統(tǒng)計有誤,學(xué)生甲實際得分是80分卻誤記為60分,學(xué)生乙實際得分是70分卻誤記為90分,更正后的平均分?jǐn)?shù)和方差分別是( )
A. 70和50 B. 70和67 C. 75和50 D. 75和67
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在等腰梯形中, , 是梯形的高, , ,現(xiàn)將梯形沿, 折起,使且,得一簡單組合體如 圖(2)示,已知, 分別為, 的中點.
(1)求證: 平面;
(2)若直線與平面所成角的正切值為,求平面與平面所成的銳二面角大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)與函數(shù)的圖象在點(0,0)處有相同的切線.
(Ⅰ)求a的值;
(Ⅱ)設(shè),求函數(shù)在上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).
(1)若,求的單調(diào)區(qū)間;
(2)當(dāng)時,記的最小值為,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)存在極大值,且極大值點為1,證明: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com