【題目】已知函數(shù)
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)存在極大值,且極大值點(diǎn)為1,證明: .
【答案】(1)見(jiàn)解析(2)見(jiàn)解析
【解析】試題分析:(1)先求導(dǎo)數(shù),再根據(jù)a討論導(dǎo)函數(shù)符號(hào)以及零點(diǎn),根據(jù)導(dǎo)函數(shù)符號(hào)確定單調(diào)性,(2)由極值定義求a,再作差函數(shù): ,對(duì)函數(shù)二次求導(dǎo)得差函數(shù)存在最小值,轉(zhuǎn)化證明最小值非負(fù)即可.
試題解析:(1)由題意,
①當(dāng)時(shí), ,函數(shù)在上單調(diào)遞增;
②當(dāng)時(shí),函數(shù)單調(diào)遞增,
,故當(dāng)時(shí), ,當(dāng)
時(shí), ,所以函數(shù)在上單調(diào)遞減,函數(shù)在上單調(diào)遞增;
③當(dāng),函數(shù)單調(diào)遞減, ,故當(dāng)時(shí), ,當(dāng)時(shí), ,所以函數(shù)在上單調(diào)遞增,函數(shù)在上單調(diào)遞減.
(2)由得 ,令,則
當(dāng)時(shí),
所以與矛盾;
當(dāng)時(shí),
所以與矛盾;
當(dāng)時(shí),
得,故成立,
得,所以,即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在上的奇函數(shù),當(dāng)時(shí),.
(1)求函數(shù)的解析式;
(2)畫(huà)出函數(shù)在上的圖象;
(3)解關(guān)于的不等式(其中).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)M在橢圓C上,過(guò)M作x軸的垂線,垂足為N,點(diǎn)P滿足.
(1)求點(diǎn)P的軌跡方程;
(2)設(shè)點(diǎn)在直線上,且.證明:過(guò)點(diǎn)P且垂直于OQ的直線過(guò)C的左焦點(diǎn)F.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知不等式ax2-5x+b>0的解是-3<x<2,設(shè)A={x|bx2-5x+a>0},B={x|}.
(1)求a,b的值;
(2)求A∩B和A∪(UB).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓: 的離心率,左頂點(diǎn)為,過(guò)點(diǎn)作斜率為的直線交橢圓于點(diǎn),交軸于點(diǎn).
(1)求橢圓的方程;
(2)已知為的中點(diǎn),是否存在定點(diǎn),對(duì)于任意的都有,若存在,求出點(diǎn)的
坐標(biāo);若不存在說(shuō)明理由;
(3)若過(guò)點(diǎn)作直線的平行線交橢圓于點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】幾千年的滄桑沉淀,凝練了西樵山的美,清幽秀麗的自然風(fēng)光,文化底蘊(yùn)厚重的旅游,古樸自然的民俗風(fēng)情.自明清以來(lái),文人雅士,群賢畢至,旅人游子,紛至沓來(lái),使秀美的西樵山成為名嗓南粵的旅游熱點(diǎn).如圖,游客從某旅游景區(qū)的景點(diǎn)處下山至處有兩種路徑,一種是從沿直線步行到,另一種是先從乘景區(qū)觀光車(chē)到,然后從沿直線步行到.現(xiàn)有甲、乙兩位游客從處下山,甲沿勻速步行,速度為50米/分鐘,在甲出發(fā)2分鐘后,乙從乘觀光車(chē)到,在處停留20分鐘后,再?gòu)?/span>勻速步行到.假設(shè)觀光車(chē)勻速直線運(yùn)行的速度為250米/分鐘,山路長(zhǎng)為2340米,經(jīng)測(cè)量,,.
(1)求觀光車(chē)路線的長(zhǎng);
(2)問(wèn)乙出發(fā)多少分鐘后,乙在觀光車(chē)上與甲的距離最短?
(3)為使兩位游客在處互相等待的時(shí)間不超過(guò)3分鐘,乙步行的速度應(yīng)控制在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】f(x)是定義在R上的增函數(shù),則下列結(jié)論一定正確的是( )
A.f(x)+f(-x)是偶函數(shù)且是增函數(shù)
B.f(x)+f(-x)是偶函數(shù)且是減函數(shù)
C.f(x)-f(-x)是奇函數(shù)且是增函數(shù)
D.f(x)-f(-x)是奇函數(shù)且是減函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)有兩個(gè)零點(diǎn)-3和1,且有最小值-4.
(1)求的解析式;
(2)寫(xiě)出函數(shù)單調(diào)區(qū)間;
(3)令,若,證明:在上有唯一零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中, 底面, , , , 為棱的中點(diǎn).
()求證: .
()求證:平面平面.
()試判斷與平面是否平行?并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com