【題目】關(guān)于函數(shù),下列選項(xiàng)中正確的有( )
A.的定義域?yàn)?/span>
B.為奇函數(shù)
C.在定義域上是增函數(shù)
D.函數(shù)與是同一個(gè)函數(shù)
【答案】BD
【解析】
①求函數(shù)的定義域,可令,解出此不等式的解集即可得到所求函數(shù)的定義域;
②判斷函數(shù)的奇偶性,要用定義法,由函數(shù)解析式研究與的關(guān)系,即可證明出函數(shù)的性質(zhì);
③此函數(shù)是一個(gè)減函數(shù),由定義法證明要先任取且,再兩函數(shù)值作差,判斷差的符號,再由定義得出結(jié)論.
④判斷函數(shù)事都是同一函數(shù),首先看定義域,定義域相同,然后看解析式,解析式也相同,即為同一函數(shù).
①由題意令,解得,所以數(shù)的定義域是,A錯(cuò)誤;
②由A知函數(shù)的定義域關(guān)于原點(diǎn)對稱,且函數(shù)是奇函數(shù),B正確;
③此函數(shù)在定義域上是減函數(shù),證明如下:任取屬于且,
,
由于屬于且,
,,
可得
所以,
即有,即,
故函數(shù)在定義域是減函數(shù),C錯(cuò)誤;
④函數(shù)定義域:,即,
,
故函數(shù)與是同一個(gè)函數(shù),D正確.
故選:BD
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上有最大值,求實(shí)數(shù)的值;
(2)若方程在上有解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,以2為半徑的半圓弧所在平面垂直于矩形所在平面,是圓弧上異于、的點(diǎn).
(1)證明:平面平面;
(2)當(dāng)四棱錐的體積最大為8時(shí),求平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平行六面體中,以頂點(diǎn)為端點(diǎn)的三條棱長都為1,且兩兩夾角為.
(1)求的長;
(2)求異面直線與夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的個(gè)數(shù)是( )
①命題“任意”的否定是“任意;
②命題“若,則”的逆否命題是真命題;
③若命題為真,命題為真,則命題且為真;
④命題“若,則”的否命題是“若,則”.
A. 個(gè) B. 個(gè) C. 個(gè) D. 個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ax2-a-lnx,其中a ∈R.
(I)討論f(x)的單調(diào)性;
(II)確定a的所有可能取值,使得在區(qū)間(1,+∞)內(nèi)恒成立(e=2.718…為自然對數(shù)的底數(shù))。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班有50名學(xué)生,在一次考試中統(tǒng)計(jì)出平均分?jǐn)?shù)為70,方差為75,后來發(fā)現(xiàn)有2名學(xué)生的成績統(tǒng)計(jì)有誤,學(xué)生甲實(shí)際得分是80分卻誤記為60分,學(xué)生乙實(shí)際得分是70分卻誤記為90分,更正后的平均分?jǐn)?shù)和方差分別是( )
A. 70和50 B. 70和67 C. 75和50 D. 75和67
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在等腰梯形中, , 是梯形的高, , ,現(xiàn)將梯形沿, 折起,使且,得一簡單組合體如 圖(2)示,已知, 分別為, 的中點(diǎn).
(1)求證: 平面;
(2)若直線與平面所成角的正切值為,求平面與平面所成的銳二面角大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)是定義在上的奇函數(shù),且.
(1)確定的解析式;
(2)判斷并證明在上的單調(diào)性;
(3)解不等式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com