【題目】如圖,四面體ABCD中,△ABC是正三角形,AD=CD.
(1)證明:AC⊥BD;
(2)已知△ACD是直角三角形,AB=BD.若E為棱BD上與D不重合的點(diǎn),且AE⊥EC,求四面體ABCE與四面體ACDE的體積比.
【答案】(1)見解析;(2)1:1.
【解析】試題分析:(1)取的中點(diǎn),由等腰三角形及等邊三角形的性質(zhì)得, ,再根據(jù)線面垂直的判定定理得平面,即得AC⊥BD;(2)先由AE⊥EC,結(jié)合平面幾何知識(shí)確定,再根據(jù)錐體的體積公式得所求體積之比為1:1.
試題解析:
(1)取AC的中點(diǎn)O,連結(jié)DO,BO.
因?yàn)?/span>AD=CD,所以AC⊥DO.
又由于是正三角形,所以AC⊥BO.
從而AC⊥平面DOB,故AC⊥BD.
(2)連結(jié)EO.
由(1)及題設(shè)知∠ADC=90°,所以DO=AO.
在中, .
又AB=BD,所以
,故∠DOB=90°.
由題設(shè)知為直角三角形,所以.
又是正三角形,且AB=BD,所以.
故E為BD的中點(diǎn),從而E到平面ABC的距離為D到平面ABC的距離的,四面體ABCE的體積為四面體ABCD的體積的,即四面體ABCE與四面體ACDE的體積之比為1:1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某校甲、乙、丙三個(gè)年級(jí)的學(xué)生志愿者人數(shù)分別為240,160,160.現(xiàn)采用分層抽樣的方法從中抽取7名同學(xué)去某敬老院參加獻(xiàn)愛心活動(dòng).
(Ⅰ)應(yīng)從甲、乙、丙三個(gè)年級(jí)的學(xué)生志愿者中分別抽取多少人?
(Ⅱ)設(shè)抽出的7名同學(xué)分別用A,B,C,D,E,F,G表示,現(xiàn)從中隨機(jī)抽取2名同學(xué)承擔(dān)敬老院的衛(wèi)生工作.
(i)試用所給字母列舉出所有可能的抽取結(jié)果;
(ii)設(shè)M為事件“抽取的2名同學(xué)來自同一年級(jí)”,求事件M發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 滿足a1= +3.
(1)證明:{an+1}是等比數(shù)列;
(2)求數(shù)列{an}的前n項(xiàng)和為Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,過點(diǎn)B作⊙O的切線BC,OC交⊙O于點(diǎn)E,AE的延長線交BC于點(diǎn)D.
(1)求證:CE2=CDCB.
(2)若AB=2,BC= ,求CE與CD的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩運(yùn)動(dòng)員進(jìn)行射擊訓(xùn)練.已知他們擊中的環(huán)數(shù)都穩(wěn)定在,,環(huán),且每次射擊擊中與否互不影響.甲、乙射擊命中環(huán)數(shù)的概率如下表:
()若甲、乙兩運(yùn)動(dòng)員各射擊次,求甲運(yùn)動(dòng)員擊中環(huán)且乙運(yùn)動(dòng)員擊中環(huán)的概率.
()若甲射擊次,用表示這次射擊擊中環(huán)以上(含環(huán))的次數(shù),求隨機(jī)變量的分布列及期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于函數(shù)f(x)=(|x﹣2|+1)4,給出如下三個(gè)命題:①f(x+2)是偶函數(shù);②f(x)在區(qū)間(﹣∞,2)上是減函數(shù),在區(qū)間(2,+∞)上是增函數(shù);③f(x)沒有最小值.其中正確的個(gè)數(shù)為( 。
A. 1 B. 2 C. 3 D. 0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M、N分別是A1B1、A1C1的中點(diǎn),BC=AC=CC1 , 則CN與AM所成角的余弦值等于( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位安排位員工在春節(jié)期間大年初一到初七值班,每人值班天,若位員工中的甲、乙排在相鄰的兩天,丙不排在初一,丁不排在初七,則不同的安排方案共有( )
A. 種 B. 種 C. 種 D. 種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)市場(chǎng)調(diào)查,某種商品在過去50天的銷量和價(jià)格均為銷售時(shí)間t(天)的函數(shù),且銷售量近似地滿足f(t)=-2t+200(1≤t≤50,t∈N),前30天價(jià)格為g(t)=t+30(1≤t≤30,t∈N),后20天價(jià)格為g(t)=45(31≤t≤50,t∈N).
(1)寫出該種商品的日銷售額S與時(shí)間t的函數(shù)關(guān)系式;
(2)求日銷售額S的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com