【題目】已知A,B是橢圓C)的左右頂點(diǎn),P點(diǎn)為橢圓C上一點(diǎn),點(diǎn)P關(guān)于x軸的對(duì)稱點(diǎn)為H,且

1)若橢圓C經(jīng)過(guò)了圓的圓心,求橢圓C的標(biāo)準(zhǔn)方程;

2)在(1)的條件下,拋物線D的焦點(diǎn)F與點(diǎn)關(guān)于y軸上某點(diǎn)對(duì)稱,且拋物線D與橢圓C在第四象限交于點(diǎn)Q,過(guò)點(diǎn)Q作直線與拋物線D有唯一公共點(diǎn),求該直線與兩坐標(biāo)軸圍成的三角形面積.

【答案】12

【解析】

1)結(jié)合斜率公式及橢圓C經(jīng)過(guò)了圓的圓心,求出即可得解;

2)聯(lián)立拋物線方程及橢圓方程求出交點(diǎn)坐標(biāo),然后設(shè)直線方程為,聯(lián)立直線方程與拋物線方程,結(jié)合,解得,再分別求出橫、縱截距,再求三角形面積即可.

解:(1)設(shè),因?yàn)?/span>,,

則點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)

,,

因?yàn)?/span>

所以,

所以,

又橢圓過(guò)圓的圓心,

所以,

所以橢圓的標(biāo)準(zhǔn)方程為;

2)由題意,拋物線焦點(diǎn)為,

故其方程為,

聯(lián)立方程組,解得(舍去),

所以,

據(jù)題意,過(guò)點(diǎn)的直線,斜率存在且不為,

設(shè)直線方程為

聯(lián)立方程組,

整理得,

,解之得,

所以直線方程為.

即是.

,得

,得.

故所求三角形的面積為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

1)討論的單調(diào)性;

2)設(shè),若上恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著馬拉松運(yùn)動(dòng)在全國(guó)各地逐漸興起,參與馬拉松訓(xùn)練與比賽的人數(shù)逐年增加.為此,某市對(duì)參加馬拉松運(yùn)動(dòng)的情況進(jìn)行了統(tǒng)計(jì)調(diào)査,其中一項(xiàng)是調(diào)査人員從參與馬拉松運(yùn)動(dòng)的人中隨機(jī)抽取100人,對(duì)其每月參與馬拉松運(yùn)動(dòng)訓(xùn)練的夭數(shù)進(jìn)行統(tǒng)計(jì),得到以下統(tǒng)計(jì)表;

平均每月進(jìn)行訓(xùn)練的天數(shù)

人數(shù)

15

60

25

1)以這100人平均每月進(jìn)行訓(xùn)練的天數(shù)位于各區(qū)間的頻率代替該市參與馬拉松訓(xùn)練的人平均每月進(jìn)行訓(xùn)練的天數(shù)位于該區(qū)間的概率.從該市所有參與馬拉松訓(xùn)練的人中隨機(jī)抽取4個(gè)人,求恰好有2個(gè)人是“平均每月進(jìn)行訓(xùn)練的天數(shù)不少于20天”的概率;

2)依據(jù)統(tǒng)計(jì)表,用分層抽樣的方法從這100個(gè)人中抽取12個(gè),再?gòu)某槿〉?/span>12個(gè)人中隨機(jī)抽取3個(gè),表示抽取的是“平均每月進(jìn)行訓(xùn)練的天數(shù)不少于20天”的人數(shù),求的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱柱中,平面,底面是邊長(zhǎng)為的正方形,交于點(diǎn),交于點(diǎn),且.

(Ⅰ)證明:平面;

(Ⅱ)求的長(zhǎng)度;

(Ⅲ)求直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,四邊形,均為正方形,且,M的中點(diǎn),N的中點(diǎn).

1)求證:平面ABC;

2)求二面角的正弦值;

3)設(shè)P是棱上一點(diǎn),若直線PM與平面所成角的正弦值為,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,垂直于所在的平面,的直徑,是弧上的一個(gè)動(dòng)點(diǎn)(不與端點(diǎn)重合),上一點(diǎn),且是線段上的一個(gè)動(dòng)點(diǎn)(不與端點(diǎn)重合).

(1)求證:平面;

(2)若是弧的中點(diǎn),是銳角,且三棱錐的體積為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓的焦點(diǎn)為,過(guò)的直線兩點(diǎn),過(guò)作與軸垂直的直線,又知點(diǎn),直線記為,交于點(diǎn).設(shè),已知當(dāng)時(shí),

(Ⅰ)求橢圓的方程;

(Ⅱ)求證:無(wú)論如何變化,點(diǎn)的橫坐標(biāo)是定值,并求出這個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)有限數(shù)列,定義集合為數(shù)列的伴隨集合.

(Ⅰ)已知有限數(shù)列和數(shù)列.分別寫(xiě)出的伴隨集合;

(Ⅱ)已知有限等比數(shù)列,求的伴隨集合中各元素之和;

(Ⅲ)已知有限等差數(shù)列,判斷是否能同時(shí)屬于的伴隨集合,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐中,底面ABCD是梯形,且,,,,,AD的中點(diǎn)為E,則四棱錐外接球的表面積為________.

查看答案和解析>>

同步練習(xí)冊(cè)答案