【題目】隨著馬拉松運動在全國各地逐漸興起,參與馬拉松訓(xùn)練與比賽的人數(shù)逐年增加.為此,某市對參加馬拉松運動的情況進(jìn)行了統(tǒng)計調(diào)査,其中一項是調(diào)査人員從參與馬拉松運動的人中隨機抽取100人,對其每月參與馬拉松運動訓(xùn)練的夭數(shù)進(jìn)行統(tǒng)計,得到以下統(tǒng)計表;

平均每月進(jìn)行訓(xùn)練的天數(shù)

人數(shù)

15

60

25

1)以這100人平均每月進(jìn)行訓(xùn)練的天數(shù)位于各區(qū)間的頻率代替該市參與馬拉松訓(xùn)練的人平均每月進(jìn)行訓(xùn)練的天數(shù)位于該區(qū)間的概率.從該市所有參與馬拉松訓(xùn)練的人中隨機抽取4個人,求恰好有2個人是“平均每月進(jìn)行訓(xùn)練的天數(shù)不少于20天”的概率;

2)依據(jù)統(tǒng)計表,用分層抽樣的方法從這100個人中抽取12個,再從抽取的12個人中隨機抽取3個,表示抽取的是“平均每月進(jìn)行訓(xùn)練的天數(shù)不少于20天”的人數(shù),求的分布列及數(shù)學(xué)期望

【答案】1;(2)分布列詳見解析,數(shù)學(xué)期望

【解析】

1)由題意可得,由二項分布的概率公式即可得解;

2)先利用分層抽樣的概念算出各組抽取的人數(shù),根據(jù)超幾何分布的概率公式求出、、、后即可列出分布列,進(jìn)而即可求得期望.

1)記平均每月進(jìn)行訓(xùn)練的天數(shù)不少于20為事件A,

由表可知,所以;

2)由題意得:抽取的的人數(shù)為;的人數(shù)為;

從抽取的12個人中隨機抽取3個,表示抽取的是“平均每月進(jìn)行訓(xùn)練的天數(shù)不少于20天”的人數(shù),Y的可能取值為01,2,3,

;;

;;

所以的分布列為:

Y

0

1

2

3

P

所以的數(shù)學(xué)期望.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線的焦點為,準(zhǔn)線為,為過焦點且垂直于軸的拋物線的弦,已知以為直徑的圓經(jīng)過點.

1)求的值及該圓的方程;

2)設(shè)上任意一點,過點的切線,切點為,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在上的函數(shù),對任意,都有成立,若函數(shù)的圖象關(guān)于直線對稱,則

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間與極值.

(2)當(dāng)時,是否存在,使得成立?若存在,求實數(shù)的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某景點共有999級臺階,寓意長長久久.游客甲上臺階時,可以一步走一個臺階,也可以一步走兩個臺階,無其它可能.若甲每步上一個臺階的概率為,每步上兩個臺階的概率也為.為了簡便描述問題,我們約定,甲從0級臺階開始向上走,一步走一個臺階記1分,一步走兩個臺階記2分,記甲登上第個臺階的概率為,其中,且.

1)甲走3步時所得分?jǐn)?shù)為,求的分布列和數(shù)學(xué)期望;

2)證明:當(dāng),且時,數(shù)列是等比數(shù)列,并求甲登上第100級臺階的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2020年席卷全球的新冠肺炎給世界人民帶來了巨大的災(zāi)難,面對新冠肺炎,早發(fā)現(xiàn)、早診斷、早隔離、早治療是有效防控疾病蔓延的重要舉措之一.某社區(qū)對位居民是否患有新冠肺炎疾病進(jìn)行篩查,先到社區(qū)醫(yī)務(wù)室進(jìn)行口拭子核酸檢測,檢測結(jié)果成陽性者,再到醫(yī)院做進(jìn)一步檢查,己知隨機一人其口拭子核酸檢測結(jié)果成陽性的概率為%,且每個人的口拭子核酸是否呈陽性相互獨立.

1)假設(shè)該疾病患病的概率是%,且患病者口拭子核酸呈陽性的概率為%,設(shè)這位居民中有一位的口拭子核酸檢測呈陽性,求該居民可以確診為新冠肺炎患者的概率;

2)根據(jù)經(jīng)驗,口拭子核酸檢測采用分組檢測法可有效減少工作量,具體操作如下:將位居民分成若干組,先取每組居民的口拭子核酸混在一起進(jìn)行檢測,若結(jié)果顯示陰性,則可斷定本組居民沒有患病,不必再檢測;若結(jié)果顯示陽性,則說明本組中至少有一位居民患病,需再逐個進(jìn)行檢測,現(xiàn)有兩個分組方案:

方案一:將位居民分成組,每組人;

方案二:將位居民分成組,每組人;

試分析哪一個方案的工作量更少?

(參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓的左、右焦點分別為,橢圓上一點與兩焦點構(gòu)成的三角形的周長為6,離心率為

(Ⅰ)求橢圓的方程;

(Ⅱ)過點的直線交橢圓兩點,問在軸上是否存在定點,使得為定值?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A,B是橢圓C)的左右頂點,P點為橢圓C上一點,點P關(guān)于x軸的對稱點為H,且

1)若橢圓C經(jīng)過了圓的圓心,求橢圓C的標(biāo)準(zhǔn)方程;

2)在(1)的條件下,拋物線D的焦點F與點關(guān)于y軸上某點對稱,且拋物線D與橢圓C在第四象限交于點Q,過點Q作直線與拋物線D有唯一公共點,求該直線與兩坐標(biāo)軸圍成的三角形面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在中美組織的暑假中學(xué)生交流會結(jié)束時,中方組織者將孫悟空、豬八戒、沙和尚、唐三藏、白龍馬的彩色陶俑各一個送給來中國參觀的美國中學(xué)生湯姆、杰克、索菲婭,每個人至少一個,且豬八戒的彩色陶俑不能送給索菲婭,則不同的送法種數(shù)為_____.

查看答案和解析>>

同步練習(xí)冊答案