【題目】已知雙曲線 (a>0,b>0)的左、右焦點分別為F1、F2 , 過點F1且垂直于x軸的直線與該雙曲線的左支交于A、B兩點,AF2、BF2分別交y軸于P、Q兩點,若△PQF2的周長為12,則ab取得最大值時該雙曲線的離心率為(
A.
B.
C.2
D.

【答案】D
【解析】解:由題意,△ABF2的周長為24, ∵|AF2|+|BF2|+|AB|=24,
∵|AF2|+|BF2|﹣|AB|=4a,|AB|= ,
=24﹣4a,∴b2=a(6﹣a),
∴y=a2b2=a3(6﹣a),∴y′=2a2(9﹣2a),
0<a<4.5,y′>0,a>4.5,y′>0,
∴a=4.5時,y=a2b2取得最大值,此時ab取得最大值,b=
∴c=3 ,
∴e= =
故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2 sinxcosx+2cos2x﹣1,在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且f(B)=1.
(1)求B;
(2)若 =3,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}是首項為1的單調(diào)遞增的等比數(shù)列,且滿足a3 , 成等差數(shù)列.
(1)求{an}的通項公式;
(2)若bn=log3(anan+1)(n∈N*),求數(shù)列{anbn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,已知圓C的圓心坐標(biāo)為(2,0),半徑為 ,以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系.,直線l的參數(shù)方程為: (t為參數(shù)).
(1)求圓C和直線l的極坐標(biāo)方程;
(2)點P的極坐標(biāo)為(1, ),直線l與圓C相交于A,B,求|PA|+|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}的前n項和為Sn , 若Sm1=﹣4,Sm=0,Sm+2=14(m≥2,且m∈N*
(Ⅰ)求m的值;
(Ⅱ)若數(shù)列{bn}滿足 =log2bn(n∈N+),求數(shù)列{(an+6)bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果是(
A.8
B.13
C.21
D.34

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是我國2008年至2014年生活垃圾無害化處理量(單位:億噸)的折線圖
(Ⅰ)由折線圖看出,可用線性回歸模型擬合y與t的關(guān)系,請用相關(guān)系數(shù)加以說明;
(Ⅱ)建立y關(guān)于t的回歸方程(系數(shù)精確到0.01),預(yù)測2017年我國生活垃圾無害化處理量.
參考數(shù)據(jù): =9.32, =40.17, =0.55, ≈2.646.
參考公式:相關(guān)系數(shù)r= 回歸方程 = + t 中斜率和截距的最小二乘估計公式分別為: = , =

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= ,證明:
(I)當(dāng)x<0時,f(x)<1;
(II)對任意a>0,當(dāng)0<|x|<ln(1+a)時,|f(x)﹣1|<a.

查看答案和解析>>

同步練習(xí)冊答案