【題目】設(shè)函數(shù)f(x)= ,證明:
(I)當(dāng)x<0時(shí),f(x)<1;
(II)對(duì)任意a>0,當(dāng)0<|x|<ln(1+a)時(shí),|f(x)﹣1|<a.
【答案】解:(Ⅰ)∵當(dāng)x<0時(shí),f(x)<1,等價(jià)于xf(x)>x,即xf(x)﹣x>0, 設(shè)g(x)=xf(x)﹣x=ex﹣1﹣x
∴g′(x)=ex﹣1<0,在(﹣∞,0)上恒成立,
∴g(x)在(﹣∞,0)上單調(diào)遞減,
∴g(x)>g(0)=1﹣1﹣0=0,
∴xf(x)﹣x>0恒成立,
∴x<0時(shí),f(x)<1,
(Ⅱ)要證明當(dāng)0<|x|<ln(1+a)時(shí),|f(x)﹣1|<a,
即整0<x<ln(1+a)時(shí),f(x)﹣1<a,
即證 <a+1,
即證ex﹣1<(a+1)x
即證ex﹣1﹣(a+1)x<0,
令h(x)=ex﹣1﹣(a+1)x,
∴h′(x)=ex﹣(a+1)<eln(a+1)﹣(a+1)=0,
∴h(x)單調(diào)遞減,
∴h(x)<h(0)=0,
同理可證當(dāng)x<0時(shí),結(jié)論成立
∴對(duì)任意a>0,當(dāng)0<|x|<ln(1+a)時(shí),|f(x)﹣1|<a
【解析】(Ⅰ)原不等式等價(jià)于xf(x)﹣x>0,構(gòu)造函數(shù),利用導(dǎo)數(shù)和函數(shù)的最值得關(guān)系即可證明,(Ⅱ)當(dāng)0<x<ln(1+a)時(shí),f(x)﹣1<a,等價(jià)于ex﹣1﹣(a+1)x<0,構(gòu)造函數(shù),利用導(dǎo)數(shù)和函數(shù)的最值得關(guān)系即可證明,同理可證﹣ln(1+a)<x<0,問題得以證明
【考點(diǎn)精析】本題主要考查了不等式的證明的相關(guān)知識(shí)點(diǎn),需要掌握不等式證明的幾種常用方法:常用方法有:比較法(作差,作商法)、綜合法、分析法;其它方法有:換元法、反證法、放縮法、構(gòu)造法,函數(shù)單調(diào)性法,數(shù)學(xué)歸納法等才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線 (a>0,b>0)的左、右焦點(diǎn)分別為F1、F2 , 過點(diǎn)F1且垂直于x軸的直線與該雙曲線的左支交于A、B兩點(diǎn),AF2、BF2分別交y軸于P、Q兩點(diǎn),若△PQF2的周長(zhǎng)為12,則ab取得最大值時(shí)該雙曲線的離心率為( )
A.
B.
C.2
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-5:不等式選講
設(shè)函數(shù)f(x)=|x+2|+|x﹣1|.
(1)求f(x)的最小值及取得最小值時(shí)x的取值范圍;
(2)若集合{x|f(x)+ax﹣1>0}=R,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,三內(nèi)角A、B、C對(duì)應(yīng)的邊分別為a、b、c,且c=1,acosB+bcosA=2cosC,設(shè)h是邊AB上的高,則h的最大值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)離散型隨機(jī)變量X的分布列為
X | 1 | 2 | 3 |
P | P1 | P2 | P3 |
則EX=2的充要條件是( )
A.P1=P2
B.P2=P3
C.P1=P3
D.P1=P2=P3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)y= sin(2x+ )﹣sinxcosx的單調(diào)減區(qū)間是( )
A.[kπ﹣ ,kπ+ ](k∈Z)
B.[kπ﹣ ,kπ﹣ ](k∈Z)
C.[kπ﹣ ,kπ+ ](k∈Z)
D.[kπ+ ,kπ+ ](k∈Z)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l:x+y+8=0,圓O:x2+y2=36(O為坐標(biāo)原點(diǎn)),橢圓C: =1(a>b>0)的離心率為e= ,直線l被圓O截得的弦長(zhǎng)與橢圓的長(zhǎng)軸長(zhǎng)相等.
(I)求橢圓C的方程;
(II)過點(diǎn)(3,0)作直線l,與橢圓C交于A,B兩點(diǎn)設(shè) (O是坐標(biāo)原點(diǎn)),是否存在這樣的直線l,使四邊形為ASB的對(duì)角線長(zhǎng)相等?若存在,求出直線l的方程,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某次數(shù)學(xué)考試的成績(jī)服從正態(tài)分布N(116,82),則成績(jī)?cè)?40分以上的考生所占的百分比為( ) (附:正態(tài)總體在三個(gè)特殊區(qū)間內(nèi)取值的概率值①P(μ﹣σ<X≤μ+σ)=0.6826;②P(μ﹣2σ<X≤μ+2σ)=0.9544;③P(μ﹣3σ<X≤μ+3σ)=0.9974)
A.0.3%
B.0.23%
C.1.3%
D.0.13%
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列{an}是公差為正數(shù)的等差數(shù)列,a2和 a5是方程x2﹣12x+27=0 的兩實(shí)數(shù)根,數(shù)列{bn}滿足3n﹣1bn=nan+1﹣(n﹣1)an .
(Ⅰ)求an與bn;
(Ⅱ)設(shè)Tn為數(shù)列{bn}的前n項(xiàng)和,求Tn , 并求Tn<7 時(shí)n的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com